
Beyond Motion Artifacts: Optimizing PPG Preprocessing for
Accurate Pulse Rate Variability Estimation

Yuna Watanabe
Northeastern University

Boston, MA, USA
watanabe.y@northeastern.edu

Natasha Yamane
Northeastern University

Boston, MA, USA
yamane.n@northeastern.edu

Aarti Sathyanarayana
Northeastern University

Boston, MA, USA
a.sathyanarayana@northeastern.edu

Varun Mishra∗
Northeastern University

Boston, MA, USA
v.mishra@northeastern.edu

Matthew S. Goodwin∗
Northeastern University

Boston, MA, USA
m.goodwin@northeastern.edu

Abstract
Wearable physiological monitors are ubiquitous, and photoplethys-
mography (PPG) is the standard low-cost sensor for measuring
cardiac activity. Metrics such as inter-beat interval (IBI) and pulse-
rate variability (PRV)—core markers of stress, anxiety, and other
mental-health outcomes—are routinely extracted from PPG, yet
preprocessing remains non-standardized. Prior work has focused
on removing motion artifacts; however, our preliminary analysis
reveals sizeable beat-detection errors even in low-motion data, im-
plying artifact removal alone may not guarantee accurate IBI and
PRV estimation. We therefore investigate how band-pass cutoff
frequencies affect beat-detection accuracy and whether optimal
settings depend on specific persons and tasks observed. We demon-
strate that a fixed filter produces substantial errors, whereas the
best cutoffs differ markedly across individuals and contexts. Further,
tuning cutoffs per person and task raised beat-location accuracy by
up to 7.15% and reduced IBI and PRV errors by as much as 35 ms
and 145 ms, respectively, relative to the fixed filter. These findings
expose a long-overlooked limitation of fixed band-pass filters and
highlight the potential of adaptive, signal-specific preprocessing
to improve the accuracy and validity of PPG-based mental-health
measures.
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1 Introduction
Recent advances in wearable peripheral sensors allow researchers
to continuously and non-invasively monitor physiological states.
Photoplethysmography (PPG) has emerged as a popular method
for monitoring cardiac activity because of its affordability, porta-
bility, and ease of integration in consumer devices. In the context
of mental and behavioral health, PPG signals have been leveraged
for myriad purposes, including, but not limited to, stress detection
[2, 27–29, 36, 37, 43], depression monitoring [38], aggression on-
set prediction [13], and detecting craving for substances [8, 12].
These analyses often rely on inter-beat interval (IBI) and pulse rate
variability (PRV) that reflect autonomic nervous system regulatory
activity. Accurate IBI and PRV estimates are therefore critical—any
bias at this stage propagates to downstream models, undermining
prediction accuracy and validity in mental-health applications.

Despite its widespread use, PPG signal preprocessing remains
non-standardized [10]. Although most pipelines begin with a band-
pass filter to remove low- and high-frequency noise unrelated to
cardiac activity, the choice of cutoff frequencies varies widely across
studies. Prior work has attempted to identify optimal cutoffs [22, 25,
26, 40], with some proposing 0.5 to 15.0 Hz as a suitable, universal
passband [40]; however, researchers have not reached a consensus.
Further, optimal filtering parameters depend on individual factors
(e.g., age, baseline heart rate), sensor placement, and the nature of
the task being recorded [5, 40]. Given this complexity, researchers
are often left to select filtering configurations that best fit their
datasets, which can be arbitrary and inconsistent. Some work has
investigated more adaptive denoising techniques instead of, or in
addition to, applying a fixed filter, including least-mean-squares
(LMS) filtering [30, 32], wavelet denoising [15], and deep learning-
based approaches [3, 21, 41]. However, these methods are typically
designed only to reduce motion artifacts and may not generalize
well to other sources of PPG signal distortion [18]. These issues
raise intertwined questions: Is adaptively denoising motion artifacts
enough to yield accurate IBI and PRV estimates? If not, how much
does parameterization in band-pass filtering matter, and can any
single fixed filter suffice?
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This paper aims to evaluate whether a one-size-fits-all band-pass
filter yield accurate IBI and PRV estimates, and, if not, quantify how
much person-, activity-, and mental-state–specific optimization of
cutoff frequencies improves accuracy. In pursuing these goals, our
work generates three key insights:

• Beyond physical activity, PPG signals contain inherent noise
influenced by the individual, their specific activities, and
mental states.

• Applying a fixed band-pass filter can introduce substantial
error in beat detection and resulting IBI and PRV estimates.

• Choosing activity- and state-specific cutoff frequencies for
each individual significantly reduces beat-detection errors
and improves IBI and PRV estimation.

Our findings suggest that preprocessing pipelines should be tailored
to each individual and recording context to obtain accurate IBI and
PRV estimates, beyond denoising motion artifacts. Doing so can
enhance the validity of physiological metrics used in mental and
behavioral health monitoring and lay the groundwork for more
personalized and accurate assessment tools.

2 Background & Related Work
2.1 Preprocessing and filtering strategies
Researchers routinely leverage PPG signals to identify various af-
fective states, including stress and depression, commonly deriving
metrics like IBI (or pulse rate) and PRV. Because filtering strategies
depend on the specific metric of interest, we focus on preprocessing
methods to extract IBI or PRV from PPG signals.

Although considerable variability in filtering configurations ex-
ists, band-pass filtering is the most commonly used preprocessing
technique [9, 29, 36, 38, 43]. Low-cut frequencies used in prior work
range from 0 Hz (i.e., no low-pass filtering) to 0.9 Hz, while high-cut
frequencies span 1.6 to 35 Hz.

In addition to band-pass filtering, some researchers apply mov-
ing averages [36] and wavelets [38], while others opt for Sav-
itzky–Golay filters [2]. While a few studies briefly explain their
rationale for filtering (e.g., to remove non-cardiac signals) [29, 36,
38, 43], most do not justify their choice of filtering methods or
cutoff frequencies, suggesting a lack of consensus on optimal pre-
processing practices. This observation reinforces our conjecture
that filtering parameters are often chosen heuristically rather than
following standardized guidelines [18].

Given the lack of standardized preprocessing practices, several
researchers have attempted to identify optimal filtering strategies.
For example, Liang et al. [22] compared seven filtering algorithms
with various filter orders applied to short-duration PPG signals
and found that a 4th-order Chebyshev Type-II filter yielded the
best improvement in signal quality indices. Other studies have
focused on determining the optimal cutoff frequencies for band-
pass filters (Table 1). Despite these efforts, different studies report
wide variation in recommended frequency ranges, with no clear
agreement.

2.2 Adaptive denoising techniques
In addition to using fixed band-pass filters, researchers have ex-
plored various adaptive techniques to denoise PPG signals. Classic

approaches include Fourier series analysis [33] and wavelet denois-
ing [15], which decomposemotion-corrupted signals into frequency
components, remove noise, and reconstruct cleaner PPGwaveforms.
Sparse signal reconstruction has also been used to isolate relevant
signal components while discarding noise [44].

Another widely studied method involves LMS-based adaptive
filters [30, 32] that optimize filter coefficients to minimize error
between the estimated clean and observed signal. While some LMS-
based approaches work without additional sensors by reconstruct-
ing noise from PPG itself [32], most rely on reference noise sources
such as accelerometer data. Independent component analysis pro-
vides an alternative that separates underlying signal sources with-
out requiring additional sensors [17, 20, 30].

Recentwork has appliedmachine learning-based denoisingmeth-
ods, including generative models [21], time-delay neural networks
[41], and autoencoder architectures [3] that aim to learn signal-
cleaning functions directly from data.

Although these methods show promise in mitigating motion
artifacts, they primarily focus on motion-related noise. In our pre-
liminary analysis (Section 4.1), we explore whether motion artifacts
are a single noise source that impacts beat-detection accuracy.

3 Methods
To evaluate the impacts of filtering parameters on beat-detection
accuracy, we apply different combinations of cutoffs and compare
their performance. We use two datasets to account for variability
between different experimental configurations.

3.1 Datasets
We used the Wearable Stress and Affect Detection (WESAD) and
Stress-free datasets, which include ECG and PPG signals collected
simultaneously. This allows us to use ECG-derived beats as ground
truth when evaluating the validity of PPG-derived beats.

WESAD dataset: The publicly available WESAD dataset was
developed for stress and affect detection [35]. It contains ECGs col-
lected with the RespiBAN chest sensor and PPGs collected with the
Empatica E4 wristband. Fifteen participants performed four tasks
to induce different affective states: baseline (20 minutes), amuse-
ment (5 minutes), stress (10 minutes), and meditation (7 minutes
× 2). Although the data includes transient periods during which
participants completed self-reports, we only used data from the
four tasks.

Stress-free dataset: The Stress-free dataset was collected to
advance stress detection [1]. The dataset contains beats from ECGs
collected with the Polar H10 and PPGs collected with the Empatica
E4 wristband. Thirty-five participants underwent three stressful
tasks after a 10-minute baseline rest period: mental arithmetic,
startle response, and a cold pressor task, each lasting 4 minutes.
Participants were given a 5-minute rest period between each task,
wherein they remained seated without engaging in any activity;
however, we use only the baseline rest data collected at the begin-
ning and the three stress-inducing tasks in our analyses.



Beyond Motion Artifacts: Optimizing PPG Preprocessing for Accurate Pulse Rate Variability Estimation UbiComp Companion ’25, October 12–16, 2025, Espoo, Finland

Table 1: Summary of recommended low-cut and high-cut frequencies in prior work.

Publication Low-cut High-cut Type of filter Evaluation

Cassani et al. [5] 0.6 Hz (adult); 1.0 Hz (child) 3.3 Hz (adult); 2.7 Hz (child) Bandpass filter Signal-to-noise ratio
Karolcik and Georgious [16] 0.35 Hz 10 Hz 4th-order Chebyshev Type-II Signal quality indices
Mejía-Mejía et al. [25] Around 0 Hz - 4th-order Butterworth filter PRV accuracy
Wolling et al. [40] 0.5 Hz 15 Hz Peak displacement
Mejía-Mejía and Kyriacou [26] Around 0 Hz 20 Hz FIR and IIR filters PRV accuracy

3.2 Initial data preprocessing
We used the heartview package, a Python package for preprocessing
signals [42]. We preprocessed WESAD ECG signals using an ellip-
tic band-pass filter (1–15 Hz) and Manikandan and Soman’s [24]
beat-detection algorithm. Following Liang et al. [22], we prepro-
cessed PPG data with a 4th-order Chebyshev Type-II filter. We fil-
tered PPGs using 525 parameter combinations: low-cut frequencies
(𝑓𝐶,low; 0.4–1.7 Hz) and high-cut frequencies (𝑓𝐶,high; 1.2–5.0 Hz),
both in 0.1-Hz increments, excluding combinations where 𝑓𝐶,low
was larger than 𝑓𝐶,high. We used HeartPy’s [39] algorithm to detect
beats in PPGs, defining each beat location as the middle-amplitude
point between foot and apex to reduce IBI and PRV estimation
errors [31].

3.3 Metrics for evaluation
We evaluate three accuracy metrics on PPG signals filtered with our
525 unique filter combinations: (1) beat location accuracy (compared
to ECG peaks); (2) IBI accuracy (compared to ECG-derived R-R
intervals); and (3) PRV accuracy (compared to ECG-derived heart
rate variability [HRV]). We then visualize how accuracy metrics
vary with filtering parameters and examine differences in optimal
settings across persons and tasks.

Beat location accuracy: Beat location accuracy measures how
closely PPG beat locations match those of ECG beats. Following
Charlton et al. [7], we label a PPG beat “correct" when it occurs
within 150 ms of the nearest ECG beat. Owing to potential mis-
alignments in sampling rate, device clocks, and waveform shape,
Charlton et al. searched offsets between PPGs and ECGs up to ±10
s. Visual inspection showed our recordings drifted far less, so we
limited our lag search to ±2 s in 20 ms steps and retained offsets that
maximized matches. We then evaluate improvements in sensitivity
(𝑆𝑒), positive predictive value (𝑃𝑃𝑉 ), and F1 score (F1). Each score
was calculated using the following formulas:

𝑆𝑒 =
𝑛correct
𝑛ECG

× 100, 𝑃𝑃𝑉 =
𝑛correct
𝑛PPG

× 100, 𝐹1 =
2 × 𝑃𝑃𝑉 × 𝑆𝑒

𝑃𝑃𝑉 + 𝑆𝑒

where 𝑛correct is the number of correct PPG peaks, 𝑛ECG is the total
number of ECG-derived peaks, and 𝑛PPG is the total number of PPG-
derived peaks. A high F1 score indicates that the selected filtering
parameters yield optimal accuracy in beat detection.

IBI accuracy: IBI accuracy measures how closely PPG-derived
IBIs match ground-truth ECG-derived R-R intervals. We segmented
the signals into 60-second windows and removed artifactual beats
using the FLIRT package to avoid skewing mean IBI estimates [11].
For segments with more than 10 valid beats, we computed the
average IBI and the difference between R-R intervals and IBIs. We
then computed the mean absolute error (MAE) of intervals per

participant and task. Lower MAE indicates higher IBI accuracy,
reflecting better beat detection.

PRV accuracy: As with IBI, we assessed PRV accuracy by com-
paring PPG-derived PRV with ECG-derived HRV. We used RMSSD
(root mean square of successive IBI differences) as the metric for
variability. Following the same procedure for IBI accuracy, we di-
vided signals into 60-second segments, removed artifactual beats,
and calculated RMSSD. We then calculated the difference between
ECG- and PPG-derived values and computed the MAE per partici-
pant and task. Lower MAE indicates higher PRV accuracy.

To further evaluate the potential impact of signal-by-signal adap-
tive preprocessing, we identify optimal filter settings at two levels:
(1) across all tasks and participants (Fglobal) and (2) per partici-
pant within each task (Fpt). We ran multi-objective optimization
at each level using the NSGA-II algorithm in the ‘pymoo’ package
[4] with average F1 score, MAE IBI, and MAE RMSSD as the mul-
tiple objectives. NSGA-II may return multiple solutions for which
none is strictly better in all three objectives. We chose the single
best filter by performing min-max normalization for each objective
and minimizing the combined metric −F1norm + MAEIBI,norm +
MAERMSSD,norm. As a baseline, we also apply a fixed non-optimized
band-pass filter (0.5–4.0Hz; Fbase), as these values align with com-
monly recommended ranges (Section 2.1). We then compare the
resulting average performance (F1, MAE IBI, and MAE RMSSD)
across the three filter settings (Fbase, Fglobal, and Fpt). Finally, we
compare the distribution of mean IBI and RMSSD against the ECG
reference across Fbase, Fglobal, and Fpt using a repeated-measures
ANOVA (𝛼 = .95) followed by Bonferroni-corrected pairwise t-tests.

4 Findings and Evaluation
4.1 The non-“motion” artifacts
We first ran a preliminary correlation analysis to test whether mo-
tion artifacts fully explain beat-detection errors. We preprocessed
PPG signals with a fixed 0.5–4 Hz band-pass filter, segmented the
signal into 60-second windows, and computed beat-detection ac-
curacy metrics (Section 3.3). We calculated Monitor Independent
Movement Summary unit (MIMS-unit)—a metric capturing human
motion from accelerometer signals [14]—and used its Area-Under-
the-Curve (AUCMIMS) to quantify motion artifact level.

We show the correlation between motion level (AUCMIMS) and
beat-detection accuracy for four representative low-motion tasks in
Figure 1. While some other tasks show moderate-to-strong correla-
tions, low-motion tasks reveal many 60-second segments with small
AUCMIMS yet poor accuracy (low F1; high MAE IBI and RMSSD).
This finding suggests that beat-detection errors can persist even
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Figure 1: Correlations between motion artifacts (AUCMIMS)
and beat-detection accuracy (F1 score, MAE IBI & RMSSD).

Figure 2: F1 score and MAE IBI and RMSSD changes across
varying (a) low-cut and (b) high-cut frequencies in the band-
pass filter for the Stress-free dataset. Each column represents
a task, and each line represents a single participant’s metric.

when motion artifacts are minimal, motivating our search for a
more flexible filtering strategy.

4.2 Evaluating different parameters
We present F1 scores and MAE IBI and RMSSD across signal seg-
ments at varying 𝑓𝐶,low values for the Stress-free dataset in Fig-
ure 2a. The choice of 𝑓𝐶,low impacted every metric in both datasets.
F1 scores drop, and MAE IBI and RMSSD increase as 𝑓𝐶,low varied
between 0.5 and 1.5 Hz (i.e., the typical human heart rate range);
however, these frequencies vary across individuals. For example,
with 𝑓𝐶,high of 4.0 Hz, participants represented by pink and red

Figure 3: Distribution of mean IBI and RMSSD derived from
ECGs and PPGs preprocessed with three types of filters for
(a) the WESAD and (b) the Stress-free datasets. Brackets with
asterisks indicate significant pairwise differences.

lines exhibited peak F1 scores around a 𝑓𝐶,low of 1.2 Hz, while par-
ticipants represented by brown and purple lines peaked around
0.8 Hz. Although some participants showed stable F1 scores and
MAE at lower 𝑓𝐶,low (0.5–1.5 Hz), others were sensitive to slight
𝑓𝐶,low changes (e.g., pink and red lines in the mental stress panels).

The choice of 𝑓𝐶,high also affected beat-detection accuracy (Fig-
ure 2b), though less than 𝑓𝐶,low. Selecting a lower 𝑓𝐶,high (below
2 Hz) generally lowered F1 scores and raised MAE IBI and RMSSD;
however, higher 𝑓𝐶,high impaired performance for some participants
and tasks (e.g., red and brown lines in the rest and startle response
panels). The optimal 𝑓𝐶,high also varied across participants and
tasks. While Figure 2a-b only show cases where 𝑓𝐶,high = 4.0Hz
and 𝑓𝐶,low = 0.5Hz, respectively, varying these parameters also
affected the graph waveform, indicating a complex relationship be-
tween the them. These results suggest that an arbitrary choice may
significantly impact beat-detection accuracy for some participants
and tasks, indicating the need for individual- and task-specific filter
parameterization. The WESAD dataset produced similar trends.

Table 2 reports mean performance across participants; in both
datasets, Fpt achieved the highest F1 scores and the lowest IBI and
RMSSD errors. Relative to Fbase, the largest mean gains were a
7.15% in F1 (WESAD stress), a 35 ms reduction in MAE IBI (Stress-
Free cold), and a 145ms reduction in MAE RMSSD (WESAD stress).
Comparing within individuals reveals still larger benefits: F1 im-
proved by up to 28.8% (median 2.50%, IQR 0.35–6.73%), while MAE
IBI and MAE RMSSD decreased by as much as 328 ms (median
2.96 ms, IQR 0.15–14.9 ms) and 329 ms (median 26.5 ms, IQR 8.65–
73.1 ms), respectively. We also show the mean IBI and RMSSD
distribution in Figure 3. Repeated-measures ANOVA revealed a
significant mean IBI difference between ECGs and PPGs only in
WESAD stress; other tasks showed none, suggesting that using
generic or fixed filtering thresholds may be sufficient for estimating
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Table 2: Mean F1 score and MAE in IBI and RMSSD with different types of cutoff frequency optimization. Optimization per task
and person produced the smallest errors in IBI and RMSSD estimations.

Dataset Task Fixed (Fbase) Optimized across task & person (Fglobal) Optimized per task & person (Fpt)
Mean F1 MAE IBI MAE RMSSD Mean F1 MAE IBI MAE RMSSD Mean F1 MAE IBI MAE RMSSD

WESAD

baseline 69.95 17.94 68.10 71.12 15.47 55.31 71.72 4.470 6.380
stress 60.96 43.36 158.7 62.64 42.49 139.98 68.11 15.97 13.34
amusement 84.54 24.38 59.60 85.37 23.00 46.64 87.05 3.655 8.729
meditation 90.00 29.30 40.58 90.36 28.32 34.03 92.01 4.830 6.409

Stress-free

cold 77.21 46.91 85.88 77.92 63.87 39.41 83.02 11.95 8.188
mental 83.23 20.30 61.80 82.17 41.77 44.78 89.03 3.497 5.128
rest 93.31 16.20 36.31 94.13 37.38 18.18 97.25 1.156 2.011
startle 89.65 28.88 44.84 89.62 51.21 20.25 93.94 2.835 3.031

aggregated/high-level metrics about heart rate or IBI. In contrast,
mean RMSSD differed across all tasks, indicating that fixed thresh-
olds introduce substantial errors when measuring variability—a
key indicator of autonomic nervous system activity and variable
of interest for a variety of mental and behavioral health outcomes.
Specifically, mean RMSSD derived from the PPGs preprocessed with
Fbase and Fglobal showed significantly different distributions com-
pared to ECGs in almost all tasks, with medium-to-large effect sizes
(Cohen’s d=0.420–4.04). PPG signals preprocessed with Fpt also
showed a significant RMSSD difference in the WESAD stress task,
p = .0007, and meditation task, p = .0074. However, effect sizes were
markedly smaller than for Fbase and Fglobal: stress task—Cohen’s
𝑑 = 4.04 (Fbase), 3.90 (Fglobal), and 0.96 (Fpt); meditation task—𝑑 =

0.71 (Fbase), 0.62 (Fglobal), and 0.11 (Fpt). These results demonstrate
that fixed cutoffs lead to substantial errors, and signal-by-signal
filtering optimization can significantly enhance the accuracy and
validity of beat detection and beat variability estimation.

5 Discussion
5.1 Impact of cutoff frequencies on RMSSD
In our analyses (Section 4.2), although F1 scores and MAE IBI ex-
hibited inverse trends, MAE RMSSD followed a distinct pattern:
it increased at specific low-cut frequencies and then decreased
again. This behavior may be explained by the nature of the PPG
waveform, which often exhibits two prominent peaks per cardiac
cycle—one corresponding to the systolic wave and the other to the
diastolic wave. As the low-cut frequency increases, low-frequency
components are attenuated, and higher-frequency components are
emphasized. Consequently, the beat-detection algorithm may erro-
neously identify both systolic and diastolic peaks as separate beats,
doubling the beat count. Interestingly, this consistent misidentifica-
tion introduces a form of regularity in the detected IBIs, resulting in
RMSSD values that appear more stable and, in some cases, closer to
those from correctly identified beats. This contrasts with interme-
diate low-cut frequencies, where beat detection is less consistent,
leading to greater IBI variability and larger RMSSD errors.

5.2 Factors influencing optimal cutoffs
Heart rate is one of the most apparent factors affecting optimal
cutoff frequencies, which vary with age, lung capacity, and activity

level. If heart rate alone could determine optimal filtering parame-
ters, applying frequency cutoffs well outside the plausible heart rate
range would preserve signal quality. However, our results demon-
strate that this is not always the case—some PPG signals remain
highly sensitive to cutoff frequency settings, and broader passbands
do not always yield accurate beat detection.

Additional factors may include stress and its physiological ef-
fects. Prior studies have shown that stress can alter PPG waveform
morphology [6, 34]. Mental stress induces vasodilation in the fore-
arm [23], affecting PPG amplitude. Respiration also modulates PPG
amplitude, wherein inhalation reduces it, and exhalation amplifies
it. These morphological changes may influence the effectiveness
of different filters. Indeed, we observed that PPG signals collected
during the mental arithmetic and cold pressor tasks in the Stress-
free dataset and the stress task in the WESAD dataset were more
sensitive to low-cut frequencies than those collected during rest.
This suggests that physiological changes induced by the person’s
activities and mental states may impact optimal configurations.

A limitation of the present work is that we employed a single
beat-detection algorithm, yet choice of algorithm may influence
optimal cutoff frequencies. Some detectors are likely more tolerant
of small shifts in filter settings, whereas others require carefully
tuned parameters. We also only examined data from Empatica E4
wristbands collected in the lab. We believe that similar patterns can
be observed in free-living data as well, once motion artifacts are
removed. However, different devices may apply different prepro-
cessing to raw data, and different on-body placement locations may
exhibit distinct waveform patterns. Future work should investigate
how different algorithms, devices, and sensor placements interact
with preprocessing choices across in-lab and in-the-wild data.

5.3 The need for adaptive filtering
Overall, our findings suggest that cutoff frequencies significantly
impact beat-detection accuracy when motion artifacts are negli-
gible, and the optimal configuration may vary across individuals,
activities, and mental states. This dependence has been largely
overlooked: applying a conventional fixed filter can distort IBI
and RMSSD in a context- and person-specific manner. Echoing
electrodermal work showing that adaptive thresholding enhances
sensitivity [19], these observations call for adaptive preprocessing
for accurate pulse rate variability estimation. During model devel-
opment, researchers may be able to manually verify that a fixed
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filter behaves sensibly; however, once deployed in the field, they
cannot inspect every new signal. If the filter systematically under-
estimates or overestimates PRV under stress for a user, for example,
the model may misclassify that state. Tuning the filter to each
signal—reflecting the user’s physiology and situation—avoids sys-
tematic errors that would otherwise propagate through the pipeline,
degrading the accuracy and validity of downstream mental- and
behavioral-health models.

In this study, we tuned filter parameters using reference ECGs.
However, such ground-truth signals are often unavailable in real-
world applications. Future work should develop task- and person-
aware optimization methods that operate without ECG references.

6 Conclusion
We investigate how non-motion noise in PPG signals degrades beat-
detection accuracy and how filter settings affect that error. We
demonstrate that PPG contains noise beyond physical movement,
so motion-artifact removal alone may not ensure accurate and
valid IBI and PRV estimates. We also demonstrate that using a
single band-pass filter for all individuals, activities, and mental
states produces substantial errors, whereas tailoring cutoffs to the
person and context consistently improves metric validity across
datasets and tasks. These results suggest the need for adaptive,
signal-by-signal preprocessing: optimizing filter parameters for
each recording can deliver more accurate IBI, RMSSD, and related
physiological markers in mental- and behavioral-health research
and real-world applications.
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