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Abstract

Understanding how frequently people experience different kinds
of daily stressors is crucial for interpreting stress exposure and
informing mental health care. But it can’t be directly estimated from
current assessment methods, such as diaries, end-of-day interviews,
and ecological momentary assessments (EMA), that use sparse
sampling to limit participant burden, and a structured response
format for uniformity. In this paper, we utilize stressor data collected
in a 100-day field study with 68 participants that adopted wearable-
triggered prompts and a freeform format to solicit stressors soon
after they occurred, but limited its prompts to a small subset to
keep the burden low. We develop asymptotic models to estimate the
latent frequency of different kinds of real-life stressors that address
sample sparsity and sampling bias. We find that people experience
5.39 stressors per day, on average. The top three are related to work
(1.76/day), health (0.59/day), and transportation (0.55/day). These
estimates offer a principled benchmark for interpreting individual
stressor loads. They can also inform mental health care treatments
and interventions by establishing population-level baselines.
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1 Introduction

Compared to major life events, daily stressors have distinct and
potent associations with psychological, mental, and physical health
outcomes [11, 16]. The National Study of Daily Experiences (NSDE),
conducted 42,000 end-of-day interviews using the Daily Inventory
of Stressful Events (DISE) approach [4, 5] over 20 years, to collect
sources of stress from more than 3,500 adults. This study revealed
that health outcomes are determined more by the nature of stress
experienced than the frequency or severity of exposure [33]. This
new finding has been supported by multiple studies across different
health outcomes [10, 25, 31].

To incorporate daily stressors in mental healthcare, providers
need to understand whether a patient’s stressor frequency deviates
from normative baselines, so they can use it for diagnosis, triage,
and treatment. Yet, there is currently a lack of empirical reference
points to interpret real-life stressor loads for different types of
stressors. This problem has remained open due to a lack of data
that captures all kinds of real-life stressors as soon as they occur.

Prevalent protocols for recording real-life stressors differ in when
and how frequently participants are prompted to recall and record
the stressors they have recently experienced. Annual and monthly
surveys detect major stressors but often miss transient events [6, 9].
End-of-day interviews offer finer resolution yet remain prone to
recall bias [5]. Interval-based EMAs prompt participants multiple
times daily, reducing recall bias and improving the detection of mo-
mentary stressors [37]. Al-triggered prompts extend this approach
further by using physiological signals to detect potential stress
events and prompting users in real-time to report if they are experi-
encing a stressor, thus getting even closer to the actual occurrence
of the stressor [23]. However, to keep the participant burden low,
they prompt participants only for a subset of the detected events.
Therefore, deriving the latent upper bound on the number of stressors
a person experiences in a day, assuming unlimited prompts, requires
applying an appropriate model to a data set of real-life stressors
that can account for its sparse and potentially biased sampling.

In this paper, we apply a new asymptotic model to the data
from 68 participants in a 100-day field study [23], where partic-
ipants wore smartwatches and responded to wearable-triggered
EMA prompts to confirm stressful events and record stressors using
freeform text. We develop models to account for sampling sparsity,
sampling bias, and diminishing return behavior, before fitting an ex-
ponential model for asymptotic estimation of the latent frequency.
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We find that saturation occurs at 5.39 stressors per day across the
study population. We then apply the same framework to the most
prevalent stressor types and report their relative frequency. Our
modeling reveals that some stressors that appear less in observed
data may actually occur more in daily life, and vice versa, highlight-
ing hidden patterns masked by biased sampling. By estimating the
latent frequency of stressors, our work provides a normative foun-
dation that can support mental health practitioners in identifying
at-risk individuals, optimizing intervention delivery, and tailoring
treatment strategies for both general and clinical populations.

2 Related Works
2.1 EMA Protocols for Stress Assessment

EMAs are commonly used to capture real-time stress experiences by
reducing recall bias, improving ecological validity, and supporting
JITAI delivery [12, 34]. Effective EMA design involves sampling
frequency, question content, and prompt timing [15]. To balance
data utility and user burden, studies use strategies such as minimum
time gaps (e.g., 30 minutes [32]), varying prompt frequencies [21],
and participant-initiated reporting [36]. Prompt schedules range
from evenly spaced [29] to probabilistic approaches (e.g., Poisson
processes [27]). As stress is a dynamic phenomenon that can arise
at any instant, some studies send frequent prompts, e.g., 12 per
day in [32]—but only for a few days (5 days in [32]) due to high
participant burden. These studies still show low yield: only 2.9%
of responses indicated high stress and 11.4% indicated moderate
stress. Longer-duration studies reduce the frequency but then have
a lower chance of catching participants in a stressful moment. For
example, in the 56-day study in [7], only one EMA was triggered, re-
sulting in 0.844 responses per day, of which fewer than 5% indicated
high stress and fewer than 25% indicated some stress. With 5 daily
responses, [32] had a chance of catching participants in a moderate,
high, or extremely high-stress state 0.715 = 5 (0.029+0.114) times
per day, whereas with 0.844 responses per day, [7] had a chance
of catching participants in a some, a lot, or a great deal of stress
state 0.253 = 0.844 * (0.05 + 0.25) times per day. These works only
captured the stress state and did not collect the stressor.

2.2 Assessment of Stressors in the field

When stressors are collected through end-of-day interviews, partic-
ipants typically report only those events that remain accessible in
memory. Interval-based EMAs, which prompt participants through-
out the day, reduce this recall bias by asking about more recent
experiences. However, some degree of autobiographical memory
decay may still occur [8]. Prior studies reflect this trade-off between
recall delay and stressor capture: daily interviews yielded an aver-
age of 0.51 stressors [17]; end-of-day smartphone surveys increased
that to 1.28 stressors [26]; interval EMAs administered every 45
minutes captured 1.82 stressors [37]; and Al-triggered EMAs av-
eraging 5.2 prompts/day captured 1.62 stressors [23]. Participants
recalled experiencing stress about 2.67 times per day in weekly
surveys [23]. Existing studies primarily report findings based on
observed samples. In contrast, this work estimates the true underly-
ing frequency of stressors using asymptotic modeling, accounting
for sparsity and biases in the sampling protocol.
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3 Methods

3.1 Relationship between Expected Number of
Stressors and Response Frequency

Let P; and P, denote the number of prompts issued and responded
to per day by participants, respectively. Each response may consist
of avalid stressor reported. Let S = {51, S2, . . ., S } denote the set of
all the stressors reported. Each stressor S; € § is assigned to exactly
one predefined stressor category Cy € C = {C1,Cy,...,CN}.

We use response efficiency to denote the number of prompt re-
sponses that result in the reporting of a valid stressor. Stressful
events in a typical day are usually limited to a finite number. Our
goal is to estimate this latent frequency of stressors per day. To
achieve a convergence to this latent frequency as the number of re-
sponses P, becomes unbounded, we need to model the diminishing
return behavior as P, increases. Such a model should account for
large within- and between-person variability in how individuals
respond to and report real-life stressors. The model should be ex-
tensible to estimate the latent frequency of all stressors, as well as
that of specific kinds of stressors that are reported more widely.

3.2 Dataset

Most existing stressor-related datasets consist of stressors collected
throughout the day via prompts issued at scheduled or random
times, or those collected via end-of-day or event-contingent prompts.
As some stressors may fade away from memory more rapidly than
others, these datasets are unlikely to capture all kinds of stressors,
making them unsuitable for our modeling. Further, asymptotic
modeling requires estimating the number of stressors likely to be
reported when the prompts are responded to at any time of the day.
Therefore, new types of datasets are needed.

The recently collected MOODS dataset [23] fulfills both of these
needs. Participants were prompted when physiological events were
detected via wrist-worn wearables, using a stress detection model [2].
This ensured that stressors were captured as soon as they occurred.
A confirmation by the participant ensured that only valid stressors
were added to this dataset. Even though only a subset of detected
events were used to generate prompts to limit participant burden,
they were distributed to events of all kinds (low arousal to high
arousal). Large amount of data, collected over 100 days from 68
participants who came from various age groups and occupations,
ensured that the dataset consists of stressors reported at all times
of the day and covers a wide spectrum of stressors. A total of 24,459
events were responded to by participants, which consisted of 9,797
valid stressors (a clear stressor description that unambiguously
identified a source of stress).

3.2.1 Stressor Classification using LLM. To manage the large num-
ber and variability of unique stressors collected in the MOODS
dataset (N>1500), we implemented a two-step process to map free-
form stressor reports into stressor categories. First, we employed a
human-in-the-loop harmonization procedure augmented by GPT-
40 via prompt engineering [24]. This step involved consolidating
semantically similar stressor phrases while preserving their un-
derlying diversity, reducing the total number of unique stressors
from over 1500 to 1120 harmonized stressors. Second, because the
field dataset lacked predefined category labels, we leveraged the
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Stress Annotated Dataset (SAD)[20], which provides diverse exam-
ples across nine stressor categories at both phrase and sentence
levels. To minimize human bias in category-level assignments and
leverage the generalization capabilities of large language models,
we fine-tuned a LLaMA 3 (8B) model[3] using LoRA [14] on the
SAD dataset. This fine-tuned model was then used to classify the
harmonized stressors into nine categories. Upon close inspection
of the Other category, we identified three more stressor categories
that warranted their own categories. This refinement resulted in a
final taxonomy of twelve stressor categories used in our analysis,
as referenced in Table 1.

3.3 Asymptotic Model of Stressor Frequency

Even though MOODS is a more suitable dataset of stressors, estimat-
ing the latent frequency of daily stressors still poses several chal-
lenges. It requires correcting for biases in prompt timing, frequency,
and user response behavior. A naive approach might attempt to
extrapolate stressor rates for each hour of the day, but such hourly
modeling would require dense sampling and careful correction for
temporal biases, given that stressor likelihood is not uniform across
the day. Instead, we shift the modeling paradigm from time-based
extrapolation to prompt-based simulation and modeling, where
we estimate the number of stressors as a function of increasing
prompt response frequency. This framing enables us to investigate
the saturation behavior in stressor reporting as responses increase.
The next section describes the design of this simulation framework.

3.3.1 Simulation Framework. To enable estimation of the latent fre-
quency of daily stressors, a simulation algorithm must meet several
key objectives. First, it should remove dataset-specific prompting
biases introduced by the original prompting algorithm. Second, it
must generate a full-day sequence of physiological events as would
be detected by an Al model. Third, each event must be assigned
a stress likelihood score. Fourth, the simulation should capture
the variability between people in how the Al model assigns these
scores. Fifth, it must account for individual differences in how peo-
ple respond to prompts based on varying levels of stress likelihoods.
Finally, the simulation should reflect the complexity of the real
world by modeling the interaction between physiological events,
stress scores, and the response behavior of the participants. We
now describe how our simulation algorithm meets these objectives.

3.3.2 Addressing Prompting Bias. The MOODS study employed a
specific prompting strategy to decide which detected events trig-
gered a prompt. Each day;, it selected one event with < 25t like-
lihood percentile, two events in the (25th, 75th] percentiles, three
events in the (75th, 95th] percentiles, and all events with > g5th
percentile, where percentiles were computed using person-specific
data. To remove this selection bias, we stratify all rated events into
20 buckets of 5-percentile likelihoods each. When generating an
event for a specific time point, it is selected from any of these 20
buckets with equal probabilities, which removes the original sam-
pling bias in the MOODS data (see Section 3.3.4). For the simulation,
we used data from 68 participants who had rated at least one event
in each of the 20 buckets.

3.3.3  Percentile Threshold for Candidate Prompts. Selection of can-
didate prompts faces a significant challenge due to wide variability
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in stress likelihood scores for large between-person variability in
physiology and physiological responses (base heart rate and how it
changes during stressful moments [32]) and biases in the Al model.
It can result in widely varying performances for different partici-
pants [32]. Therefore, instead of using a population-wide uniform
threshold [28], we construct person-specific percentiles to have a
more uniform distribution of prompts across participants. We de-
fine the following parameters to determine the percentile threshold
for selecting candidate prompts.

(i) Expected watch-wearing hours per day (w)
(if) Expected number of potential prompts per hour (1)

(iii) Response frequency (k): It depends on the response rate ex-
pected in a study which we denote by a. To achieve k re-
sponses per day, the study will need to deliver k/a prompts.

(iv) Percentile Threshold (p): Prompts in the top (100 * p) per-
centile (or p percent of prompts) are sent to the participants.

These parameters are related via the following equation which can
be used to determine any, given the others.

k k
p><(f7><w)=;;0<gS(nxw);0<r7,w (1

The right side in Equation (1) represents the number of daily prompts,

and the left side represents the number of candidate prompts ex-

pected per day that meet the threshold. The first inequality shows

that the number of daily prompts (%) can not exceed the total num-

ber of potential prompts (7 X ). Further, even though 0 < p <1
k

by definition, ,7)% < p <1 from Equation (1).

A study can select a value for p within its valid range to deter-
mine the response frequency k, or alternatively, specify a desired k
to compute the corresponding p. The choice of k is often guided by
the target number of stressors the study aims to capture per partici-
pant per day. We now explore how varying k influences the number
of stressors recorded. We assume that a study has an estimation of
parameters 7, and w.

3.3.4 Data-Driven Simulation. To estimate the frequency of daily
stressors for different response frequencies (k) from 1-12, we do
the following:

(1) Estimating Daily Stressors

o Total expected prompts per day: Ej = 1 X . We set v = 12,
n = 2.5, following [18] and the MOODS study, respectively.

e For each participant, we simulate 1,000 typical days with
12 X 2.5 = 30 prompts per day.

o To generate each prompt in a day, we randomly sample one
of 20 buckets (Section 3.3.2) and an event from the bucket.

o We compute the percentile threshold (p) using Equation 1 to
compare it with the percentile score of the intensity of the
sampled event to determine its eligibility for prompting.

e For each delivered prompt Ep, the presence or absence of
a participant-reported stressor (as recorded in the MOODS
dataset) is used to compute overall response efficiency.

® Repeat the process for all participants to estimate an average
number of daily stressors (obtained by multiplying response
efficiency with responses per day).

(2) Normalizing for Prompt Fatigue

e Response efficiency is expected to decrease as the response

frequency (k) increases. We first estimate the base response
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efficiency for each k using data from 68 participants, followed
by applying a population-level linear mixed model (LMM)
computed from the observed MOODS data.

e The population LMM fit b = 0.353(£0.172) and m = —0.007
(+0.01) is used to scale the base response efficiency up or
down for each k, relative to k = 3.89 (the average response
per day in the MOODS Study).

We repeat the simulation process to estimate category-wise fre-
quency of stressor reports by determining which stressor category
C; the prompted prompt E;, belongs to, if a stressor is reported. We
restricted our analysis to events reported between 8:00 AM and
8:00 PM in the MOODS dataset, representing a 12-hour day.

3.4 Modeling Diminishing Returns and
Saturation Point

The daily count of reported stressors is a function of response
frequency, which is contingent on the number of prompts adminis-
tered to participants. However, increasing the number of prompts
and therefore responses may not lead to a proportional rise in re-
ported stressors due to the factors outlined in 3.1. Typically, such
trends are modeled using one of three approaches: linear, hill, or
exponential models [1, 35]. Given our hypothesis that marginal
benefit diminishes with increasing responses, we model this rela-
tionship using an asymptotic exponential function, which captures
the expected pattern of a rapid initial rise followed by gradual satu-
ration, ultimately approaching an upper bound that reflects natural
limits on reported stressors. The following equation represents the
relationship between response frequency and stressors:

y(k) = (1-e7) @

o k is the number of prompt responses, y (k) is the expected number
of reported stressors, and S is the maximum possible stressors
(saturation point) per day.

o a controls the number of responses required to capture a certain
proportion of stressors (e.g., 50%). Higher values of a correspond
to faster saturation, meaning fewer responses are needed to cap-
ture most stressors of that type.

As k — oo, the exponential term e~k 0, and the expected

number of stressors per day converges to the saturation point:
lim y(k) =S 3)
k—o0

This asymptotic behavior reflects the principle of diminishing re-
turns; even with an infinite number of prompt responses, the num-
ber of reported stressors will not exceed S. The model thus aims
to capture the nonlinear relationship between response frequency
and reported stressors, ensuring a realistic estimation of the upper
bound on daily stressor experiences.

3.4.1 Weekly-Level Frequency. For better interpretation, we also
report our findings at the weekly level stressor frequency by multi-
plying the saturation value S obtained from the exponential model
by 7, reflecting maximum stressor reports over a week. To compare
with partial observations from the MOODS data, we also extrapo-
late weekly stressor counts from the dataset, for both overall and by
category. In the MOODS study, participants wore a smartwatch for
an average of 7.2 hours per day. We scale observed stressor counts
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to a 12-hour day using a factor of 12/7.2, then multiply by 7 to
estimate the number of stressors expected in a full week.

e Overall Simulation
—— Overall Model
5 = Transportation Simulation
--- Transportation Model
Health Simulation
Health Model

0.6

°
«

e 14
w »

Stressors per Day (Overall)
w

o

N

Stressors per Day (Individual)

0.1

1 6 11 16 21 26 31 36
Responses per Day

Figure 1: Simulation vs. modeled stressors per day. Scatter
points represent simulated values; lines show exponential
model fits. The right axis shows individual stressor category
frequency; the left axis shows total stressor frequency.

4 Results
4.1 Relationship of Response and Stressor
Frequency

Figure 1 shows simulation (markers) and model (lines) results for
all stressors, transportation-related, and health-related stressors
for response frequency from 1 to 36 per day (1/12 to 3 responses
per hour), respectively. We observe diminishing returns: increases
in response frequency lead to a marginal increase in additional
stressor reports. This aligns with the classical Law of Diminishing
Returns [30], where increasing sampling frequency (k) leads to
progressively smaller gains in observed stressors due to reporting
fatigue and the finite number of real stressors experienced in a day.

For the overall population, the model saturates at approximately
S = 5.39 stressors per day, indicating a practical upper bound on the
number of stressors that can be captured, even with very frequent
prompting and response. A similar pattern of diminishing returns
and saturation is observed across individual stressor categories as
well (Table 1). While increasing response frequency initially leads
to higher stressor capture, the marginal gains decrease over time,
and the benefit eventually plateaus.

4.2 Stressor Distribution Across Categories

Table 1 summarizes weekly stressor frequencies estimated from
extrapolated data (Data*) and model (Model) across 12 stressor
categories (see Section 3.4.1). Saturation was observed across all
categories, indicating sufficient data to model each category of
stressors. Substantial differences in saturation levels were observed
across categories. The top three (Work-related, Health, Fatigue, or
Pain, and Transportation) together account for more than 50% of
the cases, indicating how disproportionately they affect people.
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Interestingly, although Transportation stressors are more fre-
quent than Health-related stressors in extrapolated observed data
(2.44/week vs 1.92/week), the model-estimated latent frequency for
health-related stressors is higher. Transportation stressors tend to oc-
cur briefly in the morning and evening, leading to faster saturation
at lower response frequencies. In contrast, health-related stressors
can appear randomly and often persist throughout the day, making
them strong candidates for repeated capture as the response fre-
quency increases. The model, as evident in Figure 1, captures these
dynamics, showing a slower decline for health-related stressors ver-
sus a more rapid saturation for transportation. This demonstrates
the utility of model-based estimation in uncovering latent patterns
in daily experiences, extending beyond sparse observations.

Table 1: Model column reports the exponential model param-
eters: S (saturation per day) and a (rate of growth), along with
the expected number of weekly stressors (7 x S). Extrapolated
weekly stressors observed in the dataset are denoted as Data™.

Stressor Model Data”
S a  Weekly
Work 1.76 0.12 12.32 7.22
Health, Fatigue, or Pain 0.59 0.09 4.13 1.92
Transportation 0.55 0.15 3.85 2.44
School 0.42 0.12 2.94 1.37
Emotional Turmoil 0.40 0.10 2.80 1.66
Social Relationships 0.39 0.13 2.73 1.84
Family Issues 0.22 0.16 1.54 0.98
Everyday Decision Making | 0.20 0.20 1.40 1.26
Playing games/sports 0.12  0.31 0.84 0.87
Chores 0.07 0.17 0.49 0.37
Financial Problem 0.03 0.11 0.21 0.10
Other 0.79 0.17 5.53 3.38
All Stressors 5.39 0.14 37.73 23.4

5 Discussion

5.1 Clinical Utility of Stressor Frequencies

Latent stressor frequencies offer a normative reference point for in-
terpreting daily stress exposure, supporting more informed clinical
decision-making. For example, the model estimates an average of
12 work-related stressors per week in the general population. If a
patient reports significantly more—say, 20 or more—this deviation
from the norm could signal elevated psychosocial burden, prompt-
ing further clinical evaluation. Such population-informed baselines
allow clinicians to assess whether a patient’s stressor load is within
typical bounds or indicative of heightened risk. By contextualizing
individual reports against expected frequencies, these estimates can
guide triage decisions, inform treatment prioritization, and support
tailored intervention strategies. In this way, our work enables the
usage of observational data from ubiquitous sensing to clinically
actionable insights.

5.2 Design Implications for JITAIs

Previous research in mobile health has developed methods to fore-
cast the number of stress events to decide when to administer
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JITAIs under tight prompt budgets [18]. These methods emphasize
balancing timely support with user burden by assigning prompt
probabilities based on the number of risk events expected in a day.
Our work contributes to this foundation by modeling the frequency
of specific stressors using fitted parameters (S, a). This allows the
intervention probabilities to be tailored to each type of stressor.
By enabling stressor-specific probability estimates, our method
supports dynamic and personalized allocation of a limited inter-
vention budget, moving beyond binary stress detection and generic
prompts. This finer-grained approach helps to address the limi-
tations of one-size-fits-all interventions. Prior studies show that
users prefer stressor-specific support [13], and that only a minority
(20%) of physiologically detected stress events require interven-
tion [22]. Adapting JITAI schedules to individual stressors while
accounting for moments when interventions are desired can im-
prove effectiveness, reduce fatigue, and support more sustainable,
population-aware intervention strategies.

5.3 Estimating the Economic Cost of Stress

To estimate the economic impact of stress and burnout, two core
components are needed: (1) how frequently individuals experience
stress, and (2) how often they experience different types of stres-
sors. Our approach provides these foundational inputs by modeling
stressor-specific frequencies and fitted daily reporting parameters
(S, a), which can be used to construct realistic population-level
stress timelines. These stressor frequencies can be integrated into
agent-based simulations or Markov models, such as those used in
recent work on burnout cost modeling [19]. Moreover, this frame-
work enables estimating hidden costs of stress in domains often
overlooked—for example, stress due to transportation can now be
evaluated in terms of stress-related health and economic burden. By
embedding our stressor-frequency modeling into health-economic
simulations, organizations and policymakers can conduct scalable
evaluations of interventions without expensive data collection.

6 Limitations

While this paper offers valuable insights into the relationship be-
tween response frequency and stressors, several limitations warrant
consideration. First, our analysis is based solely on the MOODS
dataset, which may limit generalizability to other populations or
contexts. Second, we use data collected from a single commercial
stress detection model; results may differ with alternative models
due to varying features and thresholds. Third, the simulation does
not account for external factors such as demographics or contextual
influences that affect self-reporting. Despite these limitations, our
work provides a foundational framework for estimating stress re-
porting limits and informing prompting strategies. Future research
can validate our findings across other datasets and stress detection
models to strengthen generalizability.

7 Conclusion

How many times people experience stress of different kinds in real
life is a fundamental question with implications across physical
health, mental health, the workplace, relationships, among others.
By using a new dataset and novel modeling approaches to address
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sampling biases and sparsity, this work showed that people ex-
perience around 5.39 stressors per day. This has implications for
the research methods used to study stress and develop stress inter-
ventions. Understanding the stressor frequency norm in a general
population is only the start. People in different stages of life, in
different occupations, in different geographies, in different sociode-
mographics, living with different health conditions, etc., are likely
to have different norms. The stressor frequencies specific to them
can now be estimated and become a new measure to understand
the stressor burden differences across various groups.
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