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ABSTRACT
Smartwatches are an increasingly popular technology that em-
ploys advanced sensors (e.g., location, motion, and microphone)
comparable to those used by smartphones. Passive mobile sens-
ing, a method of acquiring human behavior data from mobile and
wearable devices inconspicuously, is widely used in research fields
related to behavior analysis. In combination with machine learning,
passive mobile sensing can be used to interpret various human
and environmental contexts without requiring user intervention.
Because smartwatches are always worn on the wrist, they have the
potential to collect data that cannot be collected by smartphones.
However, the effective use of smartwatches as platforms for passive
mobile sensing poses challenges in terms of battery life, storage,
and communication. To address these challenges, we designed and
implemented a tailored framework for off-the-shelf smartwatches.
We evaluated power consumption under eight different sensing
conditions using three smartwatches. The results demonstrate that
the framework can collect sensor data with a battery life of 16-31 h
depending on the settings. Finally, we considered potential future
solutions for optimizing power consumption in passive sensing
with off-the-shelf smartwatches.
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1 INTRODUCTION
The market for wearable devices, such as smartwatches, smart
bands, and smart rings, has significantly expanded with the increas-
ing popularity of such devices. According to a report by Counter-
point Technology Market Research, the global market for smart-
watches is growing by 9% annually [17]. Smartwatches are equipped
with smartphone capabilities and advanced sensors such as micro-
phones, positioning sensors, Bluetooth, Wi-Fi, and motion sensors,
all of which provide a wide range of services that enrich our lives.
More recently, smartwatches have become equipped with operating
systems (OS) that allow third-party developers to easily develop
and deploy sensor-based applications. Several context recognition
applications have been developed to detect fine-grained activities
of daily living (ADLs) [3, 7, 9–11, 13, 15, 18, 22] - such as keyboard
typing, hand washing, and cooking - using multiple sensors on the
smartwatch, primarily motion sensors and microphones.

Passive mobile sensing is used to analyze and interpret human
behaviors and environmental contexts using inconspicuously col-
lected sensor data from mobile and wearable devices [19]. This
approach enables the automatic recognition of various contexts
without manual intervention simply by carrying a device. Various
applications, including disease monitoring methods [1, 4, 16], have
been proposed based upon this approach. Furthermore, platforms
specifically designed for smartphones [2, 5, 8, 14, 21] have sup-
ported these advancements by enabling the continuous collection
of data from multiple sensors in short steps.

With the advent of these platforms, the use of passive mobile
sensing has rapidly expanded beyond computer science to encom-
pass psychology, humanities, andmedicine. Establishing an environ-
ment in which smartwatches can be utilized effectively is important
in any application of passive mobile sensing. However, effectively
leveraging the potential of smartwatches for passive mobile sens-
ing remains a challenge. Smartwatches have limitations in terms
of battery life, storage capacity, and communication capabilities,
necessitating specific design considerations.

In this study, we addressed these challenges by designing and im-
plementing a framework for passive mobile sensing specifically tai-
lored to off-the-shelf smartwatches. Our framework, implemented
on anAppleWatch, supports the use of eight types of sensors includ-
ing motion, microphone, and location sensors. Finally, we evaluated
the power consumption of our framework under eight different
sensing conditions using three types of smartwatches. Our experi-
mental results demonstrate that the proposed framework collects
sensor data within the sufficient range of 16-31 h depending on the
settings. In addition, the results reveal that certain sensors exhibit
high power consumption tendencies, necessitating the optimization
of the processing frequency and sensing approaches.
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2 RELATEDWORK
In Section 2.1, we summarize prior studies pertaining to mobile
sensing using off-the-shelf smartphones and wearable devices, also
known as passive mobile sensing. In Section 2.2, we present ex-
amples of context-recognition methods using smartwatches. In
Section 2.3, we describe existing frameworks and libraries designed
for passive mobile sensing and context recognition.

2.1 Passive Mobile Sensing
Passive mobile sensing enables the continuous collection of sensor
data from hardware and software without requiring manual user
intervention. This approach also allows for the analysis of human
behavior using objective data [6, 12, 20], which can be combined
with machine learning techniques for the automatic detection of a
variety of contexts [1, 4, 16]. For instance, passive mobile sensing
has been applied to detect binge drinking [1], depression [16], and
loneliness [4].

Doryab et al. [4] collected daily activity data from smartphones
and Fitbits of 160 college students over a semester to infer lev-
els of loneliness. For activity data, they collected motion (i.e., ac-
celerometer, gyroscope, and magnetometer), location, screen status,
Bluetooth address, phone call events, sleep, and steps from both
devices. By applying reinforcement learning to the collected data,
they achieved an accuracy of approximately 80% in the binary clas-
sification task of loneliness and non-loneliness.

Smartphones, which are the devices primarily used for passive
mobile sensing, are equipped with various hardware and software
sensors that can collect data to effectively interpret behavioral pat-
terns. However, a smartphone cannot collect data when it is not in
use. In addition, movements of the upper arm alone, such as wash-
ing hands, brushing teeth, or putting on a face mask, are difficult
to detect via smartphone. Furthermore, some OSs restrict sensors
from sensing the background. For instance, in iOS, it is impossible
to control the endpoints of background audio recordings. Owing to
these limitations, existing methods do not allow continuous record-
ing of environmental sounds, conversation events, or noise levels
in the background.

2.2 Context Recognition Using Smartwatch
Similarly to smartphones, smartwatches are equipped with numer-
ous sensors, making them ideal sensing platforms. Platforms such as
watchOS for Apple Watch, wearOS for Android Wear, and Fitbit are
commonly used in research projects as application programming
interfaces.

Furthermore, motion sensors and microphones on smartwatches
are known to be powerful sensors for the detection of fine-grained
ADLs and hand gestures [3, 7, 9–11, 13, 15, 18, 22]. For example,
Laput, G. et al. developed an algorithm [11] that classifies 25 hand
activities using motion sensors on a wrist-warming device, achiev-
ing a classification accuracy of 95.2%. In the case of the microphone,
Komatsu et al. proposed a method to detect daily conversations and
ambient noise on an off-the-shelf smartwatch, obtaining accura-
cies of 90% and 85% in silent and noisy conditions, respectively [9].
Bhattacharya, S. et al. proposed a method to detect DALs [3] us-
ing acoustic and inertial sensors on an off-the-shelf smartwatch.

The method was used to recognize 23 activities including writing,
cooking, and cleaning with high accuracy.

The primary objective of these studies was the development of
behavior recognition methods and algorithms using smartwatches,
which have yet to be sufficiently designed and discussed as passive
mobile sensing platforms.

2.3 Mobile Sensing Framework and Library
Recently, several frameworks have been proposed for the implemen-
tation of passive mobile sensing. The AWARE framework [5, 14],
Sensus [21], EmotionSense1, Passive Data Kit2, and SensingKit [8]
are mobile sensing frameworks that are frequently and ubiquitously
used in computing communities. These frameworks allow users to
collect various sensor data simply by installing certain smartphone
applications, enabling collaboration between the computer science
field and various other fields including medicine, psychology, and
social sciences.

The AWARE framework [5, 14] and SensingKit [8] enable the
easy embedding of sensing libraries into any application through a
de facto standard library manager, such as Jetpack (for Android) and
CocoaPods (for iOS). These frameworks are essentially optimized
for continuous sensing on smartphones, and are guaranteed to work
on major OSs such as iOS and Android.

3 MOTIVATION
The objective of this study was to develop a passive mobile sens-
ing infrastructure specifically designed for smartwatches while
considering the constraints associated with smartwatch technol-
ogy. In the context of passive mobile sensing, smartphones have
been recognized as useful sensing platforms, with several frame-
works [5, 8, 14, 21] having been developed to support passive mo-
bile sensing. However, standalone smartphones cannot collect data
when they are not in use, and are insufficient for detecting activities
involving only the upper arm. Although smartwatches offer a poten-
tial solution to these limitations [3, 9, 11], they are associated with
constraints in communication, storage, power consumption, and
background processing, which differ from those of smartphones.
Currently, there is a lack of passive mobile sensing infrastructure
tailored to commercially available smartwatches, resulting in the
underutilization of various behavior recognition methods proposed
for smartphone-based passive mobile sensing studies.

Therefore, we designed and implemented a prototype sensing
platform on smartwatches capable of continuously collecting data
from multiple sensors, and conducted fundamental evaluation ex-
periments on power consumption under different settings. By en-
abling passive sensing using commercially available smartwatches,
we can complement the sensing capabilities of standalone smart-
phones and improve the granularity of passive sensing. In this
paper, we focused on the Apple Watch series.

4 PASSIVE MOBILE SENSING FRAMEWORK
FOR SMARTWATCHES

A passive mobile sensing framework for smartwatches requires
(1) support from multiple sensors and (2) continuous collection of
1https://emotionsense.github.io
2https://passivedatakit.org/

https://emotionsense.github.io
https://passivedatakit.org/
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Figure 1: Overview of smartwatch-based passive sensing framework

sensor data. Additionally, (3) it must have a realistic battery life
that is not intrusive for the user.

To achieve (1), the proposed framework supports the eight types
of sensors (e.g., motion, microphone, and battery) used by current
models of the Apple Watch. Any sensor can continuously run on
our proposed framework using the background mode on watchOS,
which corresponds to (2). In addition, (3) is met by periodically
transferring the collected sensor data to the background using a
data compression method, thereby minimizing power consumption.

4.1 Design
Figure 1 presents an overview of the proposed framework. The pro-
posed framework can be primarily divided into a smartphone side
and a smartwatch side. The smartwatch side includes the session,
sensor, and sync managers. The session manager handles operation
commands - such as start, stop, and various configurations of a
sensing session - from the smartwatch and a smartphone.

The sensor manager activates and deactivates the hardware and
software sensors. The received sensor data are periodically saved
as comma-separated values (CSV) files. The sync manager controls
the CSV file transfer using a host smartphone. When the session
manager receives a session stop or forces a sync command, the sync
manager starts transferring the files. In addition, the sync manager
periodically transfers files if the session enables a sync function
with a preset interval. To minimize the file size, the transfer files
are compressed using a compression algorithm.

The smartphone saves CSV files received from the smartwatch.
This library is designed as a plugin for the AWARE framework [5,
14] Thus, the collected sensor data are saved in a database of the
AWARE framework and processed in the AWARE ecosystem.

4.2 Implementation
This library was implemented on watchOS 9, and the source code
was written in Swift. This library for iOS was implemented as part
of the AWARE framework3. Moreover, the proposed framework

3https://github.com/awareframework

can be installed through CocoaPods, a de facto standard library
manager for iOS and watchOS application development.

4.2.1 Session and Sensor Managers. The sensor manager manages
the start, end, and configuration of the sensing phase. The AWSensor
class (shown in Figure 2), which represents the sensor manager,
provides functions to start, end, and configure a sensing session.
The class is implemented as a singleton, enabling developers to
access the project anywhere. To launch an app in background mode
in watchOS, one of the following must be used: audio, location
update, voice-over IP, remote notifications, or workout processing.
This library uses workout processing for each sensing session.

The sensor manager manages hardware and software sensors
on an Apple Watch. In the current implementation, our library
supports the continuous collection of data from motion, location,
microphone, battery, and heart rate sensors. The collected sensor
data are temporarily saved as CSV files on the smartwatch. The
motion sensor includes an accelerometer, a gyroscope, and a device
that collects sensor data by 100 Hz to the maximum extent. The raw
audio file is saved as an MPEG-4 Low Complexity AAC audio object
with a sampling rate of 22050Hz. In addition, themicrophone sensor
extracts ambient noise levels once per second using real-time audio
processing. The ambient noise level contains the sound pressure
level (decibel) and root mean square (RMS) value of the sound.
Moreover, the audio sensor supports an audio recognition function
using CoreML4, a built-in machine learning framework onwatchOS.
CoreML can use deep learning-based classification models created
by Apple’s CreateML or PyTorch5. Figure 2 presents sample code
for activating motion, ambient noise, and battery sensors using
AWSensor.

4.2.2 SyncManager. The syncmanagermanages file transfer events
and schedules them according to the configuration of the sensor
manager. File transfers are performed using the transferFile method
onWCSession6. Prior to transferring a file, the manager compresses
4https://developer.apple.com/machine-learning/core-ml/
5https://coremltools.readme.io/docs/pytorch-conversion
6https://developer.apple.com/documentation/watchconnectivity/wcsession

https://github.com/awareframework
https://developer.apple.com/machine-learning/core-ml/
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Figure 2: Sample code to integrate proposed framework into
watchOS application

(a) Main screen (b) Setting screen (c) Ambient noise (d) Accelerometer

Figure 3: Screenshots of example watchOS application

it using the zlib algorithm7 to minimize the file size. As shown in
Figure 2, AWSensor can control the interval for periodic file trans-
fers.

4.2.3 Example Application on watchOS. Figure 3 presents screen-
shots of a sample watchOS application based on the proposed li-
brary. On one of the main screens (Figure 3(a)), the toggle button
is connected to the start() and stop() functions on AWSensor.
AWSensor saves the collected sensor data into a CSV file immedi-
ately. In addition, AWSensor caches the collected sensor data using
data visualization and preprocessing. Figures 3(b), 3(c), and 3(d)
show examples of data visualization. Each chart is updated in real
time when the sensor receives new data.

5 EVALUATION
In our performance evaluation, we investigated the battery con-
sumption of our proposed framework under eight conditions. Dur-
ing the experiments, a smartwatch was fixed on a desk to monitor
battery consumption from a fully charged state to a fully discharged
state.

5.1 Methods
Table 1 lists the identifiers of the eight evaluation conditions, along
with corresponding details. baseline is the baseline condition,
wherein battery sensors are used to record battery levels 1 min.
audio_raw, audio_noise, and audio_conv are conditions pertain-
ing to audio sensors. audio_raw continuously records raw audio
data and transfers the audio file to a compatible smartphone ap-
plication every 5 min. audio_noise extracts audio features (i.e.,
noise level and RMS) from the raw audio data every 1 sec (see
Section 4.2.1). audio_conv detects conversation events 1 sec using
7https://developer.apple.com/documentation/compression/algorithm/zlib

CoreML, a built-in deep-learning-based machine learning module
on iOS and watchOS. For conversation detection, we used the audio
classification model developed in our prior work [9].

As a motion sensor, we used an accelerometer, as they are com-
monly used to gather information on human activities in context-
aware computing. Accelerometer data are collected from three
devices with two different sensing frequencies: 5 and 100 Hz. Specif-
ically, 100 Hz is the maximum sampling rate on watchOS, whereas
5 Hz is a common low sampling rate for behavioral detection. In
this evaluation, we used the Apple Watch Series 8 (41mm, watchOS
9, and GPS model) as the benchmark device. In addition, we used a
larger device (Apple Watch Series 8, 44mm) that was reasonably
priced (Apple Watch SE generation 2: SE2). Accelerometer-related
identifiers start with acc. The identifiers can also be split by an
underscore, with the second, third, and fourth labels indicating
sensing frequency, device type, and device size, respectively.

5.2 Hypothesis
We set a hypothesis stating that power consumption is likely to be
lowest at baseline, and higher for motion sensors with a sampling
rate of 100 Hz, as well as microphones. Conversely, power consump-
tion is likely to be low for motion sensors with a low sampling rate
of 5 Hz.

Similarly, audio-related sensors, which require higher data pro-
cessing power, are expected to consume more power than accel-
eration sensors. In addition, large amounts of data transfer from
smartwatches to smartphones may increase power consumption
due to increased communication time and data processing.

5.3 Result
Figure 4 and Table 1 present the results of the performance eval-
uation. The order of results in terms of battery life is almost the
same as that of compressed file sizes in the periodic transmissions
from the smartwatch to a smartphone. In this experiment, the col-
lected sensor data were transferred once every 5 min. Given a fixed
transfer frequency, a smaller transfer file size directly correlates to
a longer battery life.

The ambient-sound sensor (audio_noise) consumed approxi-
mately the same energy level as the motion sensors. The environ-
mental sound sensor calculated the sound pressure level and RMS
once every second. Although sound processing was performed,
the frequency of data writing was extremely low, and the amount
of data to be written was also small; consequently, power con-
sumption was significantly lower than that for audio_audio and
audio_conv.

Comparing the results of battery life between acc_100Hz_s8_41mm
and acc_5Hz_s8_41mm, the lower sampling rate is associated with
longer battery life. Sensors with higher sampling rates produce
large amounts of sensor data, which leads to an overload in data
processing and transmission. Moreover, a comparison of power
consumption between devices exhibited no significant differences
between 44 mm and 40 mm of Series 8. However, the operation
time of SE2 was approximately 69% that of Series 8. SE2 has a
second-generation optical heart rate sensor, whereas Series 8 has
a third-generation sensor. In workout mode, which is required for
background activity on the AppleWatch, the heartrate sensor keeps

https://developer.apple.com/documentation/compression/algorithm/zlib
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Table 1: Battery life in eight evaluation conditions

# sensor name sensing configuration device name (series, size) file size (compressed) elapse time (hour)
baseline battery every 60 seconds Series 8, 41mm 260 bytes (90 bytes) 31.28
audio_raw raw audio continuous (5 min) Series 8, 41mm 1.2 MB (1.1 MB) 16.82
audio_noise ambient noise every 1 second Series 8, 41mm 53 KB (18 KB) 25.20
audio_conv conversation every 1 second Series 8, 41mm 49 KB (14 KB) 21.60
acc_5hz_s8_41mm accelerometer 5 Hz Series 8, 41mm 124 KB (21 KB) 29.17
acc_100hz_s8_41mm accelerometer 100 Hz Series 8, 41mm 2.5 MB (398 KB) 25.33
acc_100hz_s8_44mm accelerometer 100 Hz Series 8, 44mm 2.5 MB (398 KB) 25.10
acc_100hz_se2_40mm accelerometer 100 Hz SE Gen2, 40mm 2.5 MB (398 KB) 17.50
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Figure 4: Trend of battery drain for smartwatch from 100%
to 0% with different sensor settings

running even if it is not used during data collection. Therefore, the
difference in battery consumption of heartrate sensors may be af-
fected by this difference in functionality.

6 DISCUSSION
The following subsections examine the methods for reducing bat-
tery consumption in passive sensing on smartwatches based on the
evaluation results. In addition, we discuss the effects of multiple
sensor usage, as well as potential applications of the proposed pas-
sive sensing framework. Finally, we consider the limitations of our
study, as well as future directions of research.

6.1 Battery consumption and its optimization
The results for battery consumption largely correlate with our
hypothesis. Compared to the baseline, power consumption was
higher for sensors that sampled more frequently and transferred
larger files. Conversely, sensors with a lower sampling frequency
and smaller transfer file size consumed less power.

One approach to optimizing power consumption is incorporating
a duty cycle, which involves the cyclical activation and deactiva-
tion of resource-intensive processes. For instance, in the case of
conversational event detection, the algorithm for detecting such
events executes over a one-minute interval every three minutes.
If a conversational event is detected during that interval, the de-
tection process is extended by an additional minute. This strategy
effectively reduces the frequency of utilizing the computationally

intensive conversational event detection algorithm, thereby mini-
mizing power consumption. This approach is practical for sound
as well as motion sensors.

From the experimental results, we observe that the amount of
data transferred in each transmission significantly affects battery
consumption. Therefore, carefully selecting the transferred data vol-
ume is necessary to optimize power consumption. Additionally, the
frequency of data transfers and communication method employed
may also impact power consumption, warranting further investiga-
tion in future studies. For instance, data compression techniques
tailored to the transferred data may be considered. Another strategy
may involve bundling data transfers during battery charging peri-
ods, or directly uploading data to the data collection server when a
Wi-Fi connection is available. These measures can potentially help
mitigate power consumption in data transfer processes.

In multi-sensor tasks, power consumption varies depending on
the combination of sensors. For example, given the 31.28 h baseline
recording time, the use of an acceleration sensor at 5Hz incurs a
reduction of 2.11 h, whereas speech recognition yields a further
reduction of 9.68 h. Simultaneously using both sensors would likely
result in approximately 19.49 hours of battery life (11.79 h less than
the baseline).

6.2 Applications
By leveraging this framework, the seamless integration of passive
sensing functionality into iOS can be achieved on Apple Watch
hardware. Because the smartwatch is worn on the wrist, it can
record the user’s activities even without owning a smartphone.
For example, the motion sensor can detect ADLs, which may help
interpret the users’ lifestyle patterns.

Android and iOS-based passive mobile sensing frameworks have
been widely applied across various domains, especially as recogni-
tion foundations for the mental and physical states of humans in
real-world environments [6, 20]. Previous studies have indicated
that noise levels, conversations, and ambient sounds significantly
impact mental health. However, the background sensing of ambi-
ent sounds is limited due to the restrictions associated with the
latest versions of iOS. Our developed approach using watchOS of-
fers a practical solution that enables audio sensing and on-device
processing. Moreover, the framework allows for easy execution
of deep-learning-based speech recognition models developed via
CreateML or PyTorch through a simple drag-and-drop process, fa-
cilitating the flexible and straightforward utilization of audio-based
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sensing. Similarly, the framework can be extended to incorporate
motion-sensor-based activity recognition algorithms.

6.3 Limitation and Future Work
In this experiment, the battery consumption of the proposed frame-
work was measured using a smartphone in a fixed position under
ideal conditions. Owing to the substantial differences between the
experimental and actual usage environments, more power is ex-
pected to be consumed than during normal daily usage. Accordingly,
future evaluation experiments must consider a more practical ex-
perimental setting. The optimization of battery consumption is
another future direction of research.

Beyond the scope of mental and physical state recognition, re-
search is currently progressing on intervention methods to promote
behavioral change. Consequently, there is potential for this frame-
work to serve as an intervention platform. In the future, we plan to
develop intervention mechanisms that utilize collected sensor data
and collaborate with external systems to enable interventions at
various times.

7 CONCLUSION
Smartwatches offer powerful sensing capabilities that can be lever-
aged for the detailed analysis of human behaviors and real time
interventions in passive mobile sensing. However, the use of smart-
watches for passive mobile sensing incurs constraints in commu-
nication, power consumption, processing capability, and storage.
To address these constraints, we propose a sensing framework
specifically designed for smartwatches considering the aforemen-
tioned limitations. We designed and implemented a platform on
Apple’s watchOS capable of continuously recording data from eight
different sensors. Through evaluation experiments, we compared
the power-consumption performance of the implemented platform
under various conditions. The battery life varied with respect to sce-
nario, ranging from 16 to 31 h for different activities. We observed
that power consumption was influenced by the processing load on
the device, and the sizes of the files transferred. The optimization
of power consumption requires fine-tuning the sensing frequency,
refining startup and shutdown timings, and exploring data compres-
sion techniques. In summary, our proposed smartwatch sensing
framework represents a promising avenue for detailed behavioral
analyses and real time interventions in passive mobile sensing.
Future work should focus on optimizing power consumption by
adjusting the sensing frequency, startup and shutdown timings,
and data compression methods.
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