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ABSTRACT
Studies in the lab have shown that affect recognition using physi-
ological data is feasible with machine learning methods. Datasets
collected in-the-wild can further improve such methods’ robustness
and applicability. This study presents LAUREATE, a Longitudinal
mUltimodal student expeRience datasEt for AffecT and mEmory
research. The dataset was collected throughout a university semes-
ter with 44 participants (including two lecturers) in two courses
totalling 52 sessions, including classes, quizzes, and exams. We
recorded participants’ physiological signals with a wristband device
and collected daily survey answers about participants’ behaviour
(e.g. study hours, smoking habits, physical activity, caffeine and food
intake) and their perceived engagement, attention, and emotions
after class. As a proxy for evaluating the quality of the physiological
data, we present preliminary findings about the relation between
the physiological signals and the different session types.
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1 INTRODUCTION
The availability of small wearable low-cost sensors, combined with
advanced signal processing and machine learning, is driving the
revolution inmobile behaviourmonitoring. This technological drive
enables novel approaches for accurate measurements in sports
analytics, well-being, and lifestyle monitoring. To further extend
the applicability of wearable sensors in sectors such asmobile health
systems, methods for accurately extracting subtle psychological
and physiological information from the sensors are required. Such
methods have direct applicability in systems for remote monitoring
and management of mental disorders. The COVID-19 pandemic
considerably increased the demand for such remote solutions [16]
because of the reduced capacity for mental health services and
the worsening mental health status of the general population (e.g.,
due to movement constraints and loss of friends and relatives).
However, accessing psycho-physiological information in everyday
life remains challenging [10] – smartphones can count steps, but
they cannot recognise affect.

Many studies in controlled environments have confirmed that
some form of affect recognition can be performed with speech
analysis, video analysis, or physiological data analysis combined
with Machine Learning. Most of the methods that use physiological
signals are based on data from electrocardiogram (ECG), electroen-
cephalogram (EEG), functional magnetic resonance imaging (fMRI),
galvanic skin response (GSR), electrooculography (EOG) or Blood
Volume Pulse (BVP) sensors [25]. However, methods developed
in controlled environments often fail when applied in the wild.
Several studies have tackled the problem of affect recognition in
the wild (e.g., monitoring stress outside the lab [7, 15, 23]), but the
number of these studies is limited, and the variability of the affec-
tive states monitored in these studies is also limited. The lack of
in-the-wild labelled datasets for affect recognition is another factor
that contributes to the slow development of robust methods. It is
challenging to collect such datasets because it requires participants’
adherence multiple times per day for several weeks or months.

In this work, we present LAUREATE, the Longitudinal mUlti-
modal student expeRience datasEt for AffecT and mEmory research.
More specifically, we present an initial exploratory analysis of the
physiological data available in the dataset. The dataset, described
in more detail in Section 3.1 "Data Collection", includes physio-
logical signals of 42 students and two lecturers over 26 sessions,
each within the context of two different courses. With the intention

https://orcid.org/0000-0001-7484-4116
https://orcid.org/0000-0002-1220-7418
https://orcid.org/0000-0002-8834-7388
https://doi.org/10.1145/3544793.3563426
https://doi.org/10.1145/3544793.3563426
https://doi.org/10.1145/3544793.3563426


UbiComp/ISWC ’22 Adjunct, September 11–15, 2022, Cambridge, United Kingdom Laporte et al.

of evaluating the data quality, we will focus on the relationship
between physiological signals and their ability to distinguish be-
tween different events during sessions, like classes, quizzes and
exams. Our assumption is that different sessions cause the students
to be in different affective states (e.g., different levels of stress and
engagement), causing visible physiological changes measured by
wrist devices.

2 RELATEDWORK
A recent review by Siddiqui et al. [21] lists 50 datasets from affec-
tive computing studies containing multimodal data such as facial
expressions, speech, and physiological signals. In this section, we
focus on datasets containing physiological signals. Datasets like
Ascertain [22] and Amigos [14] are emotion recognition datasets
where participants watched affective multimedia in short sessions.
Laughter [4] is another slightly different dataset aiming to recognise
laughter using non-invasive wearable devices. Some datasets focus
on monitoring driving workload [2, 9, 20] where participants drove
a predefined route with different stressful or stress-free sections
(e.g., crowded vs free highway) in real life [9, 20] or in a simulator
[2]. There are also datasets for monitoring cognitive load, where
participants played games on a smartphone or performed specific
tasks designed to induce various cognitive load levels [6]. Similarly,
studies have used math problems combined with time pressure
[7] and the Trier Social Stress Test [19] to induce different stress
levels in participants. All of these datasets have been widely used
to develop affect recognition models in a controlled environment.
To further improve the applicability of those models, longitudinal
datasets from less controlled environments are needed.

After reviewing related literature on affective datasets [21, 25],
we believe this is the largest dataset for physiological data from
the Empatica E4 device. There are similar multimodal datasets, like
CLAS [12], DEAP [11], MMSE [26] and WESAD [19]. Although
CLAS and MMSE benefit from having a larger number of partic-
ipants, our dataset contains longer-length repeated sessions per
participant. WESAD and DEAP, while comparable in the number of
subjects, were done in a controlled laboratory setting, whereas our
work was carried out in a classroom. Gjoreski et al. [7] released a
dataset of only five subjects for monitoring stress in the wild using
the Empatica wrist device. Di Lascio et al. [3] also measured stu-
dents’ and lecturers’ physiological data. Although their dataset has
a higher diversity of courses (five instead of two), their experiment
only lasted three weeks, while ours lasted 13 weeks.

Perhaps one of the most relatable datasets in the area of the stu-
dent experience is StudentLife [24]. In this study, 48 students from
one course answered daily and weekly surveys over the course of 10
weeks about their lifestyle, mental well-being, and academic perfor-
mance. The dataset also comprises sensor data from smartphones.
Nonetheless, our dataset differs from it by adding physiological
data from students and lecturers.

3 THE DATASET
In this section, we describe the steps followed for the data collection
and feature extraction from the physiological signals.

Figure 1: Data collection procedure. Each session begins with
the device setup. There are three types of sessions depending
on their blocks (class, quiz, exam, and break): a) class-only
sessions separated by a break, b) class sessions preceded by a
quiz, and c) exam sessions. A survey followed all sessions.

3.1 Data Collection
We conducted a longitudinal study throughout a university semes-
ter (∼14 weeks) with 44 participants (including two lecturers) in
two courses. One course was at the Bachelor’s level, and the other
at the Master’s level of our university. The data were collected
during 26 sessions of each course, including the different classes’
examinations (in-class quizzes, and midterm and final exams). The
data-collection procedure is explained in Figure 1. Prior to the start
of each session, we provided participants with an E4 wristband
from Empatica. The E4 is a wrist-located device, similar to a smart-
band or smartwatch, that unobtrusively measures four different
physiological signals of the users through its sensors: electrodermal
activity (EDA), blood volume pulse (BVP), acceleration (ACC) and
skin temperature (ST).We fitted the participants with the device and
started recording their data. As lecturers gesture more with their
hands and walk while presenting, they used one device on each
wrist to reduce possible signal artefacts caused by movement. It is
important to note that exam blocks always took the entire session
length, and quiz blocks were always at the beginning. Therefore,
there are three subtypes of class blocks, depending on their context:
class-start, class-after-quiz and class-after-break, as shown in Figure
1.

The students answered pre-study and post-study surveys about
their habits and personality, including the Big Five questionnaire.
They also answered daily surveys about their behaviour (e.g., nu-
trition, physical activity, sleep quality, and study habits) and, on
lecture days, about their post-class emotional states (e.g., positive
and negative affect, engagement, satisfaction). Daily surveys were
administered via a mobile phone application. Lecturers answered
post-class surveys about their emotions, their engagement, and the
engagement they perceived from the students. We also captured
audio of the lecturer, video recordings of the classrooms, and a
video stream of the slides for each lecture.

After each recording session, we connected the devices to a
computer for data synchronisation with Empatica’s servers, a nec-
essary step for accessing the data. We then downloaded the data
and started the processing step. The procedure included data clean-
ing, feature extraction, and data normalisation. Each student had
the possibility of visualising their own processed data through an
interactive dashboard.
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Figure 2: Normalised mean skin temperature (with shaded 95% confidence interval) of all participants in two different sessions.
The data is min-max normalised per participant per session. Figure 2a is a class-only session, whereas Figure 2b starts with a
quiz and is followed by a class block (i.e., class-after-quiz). In both cases, a break separates both class blocks.

The full dataset contains over 1400 hours of physiological data
from 44 individuals, 3600 completed daily surveys from students, 70
hours of audiovisual recordings from the classes, and students’
grades for quizzes, assignments and midterm and final exams,
among others.

Ethics delegates at our Faculty examined and authorised the
experimental protocol. Students were compensated for their partici-
pation in the study. Instructors from the course had no access to any
of the data from the students. Participants signed an informed con-
sent agreeing to share their data anonymously. An alphanumeric
identifier has been used to match identities with their data.

3.2 Feature extraction and data normalisation
In addition to the raw signals from the Empatica device (EDA, BVP,
ST and ACC), the dataset contains 157 features extracted using
2-minute sliding windows. The features include statistical descrip-
tors of the raw signals and their derivatives and expert-based fea-
tures important for affective computing studies. The expert-based
features include HRV descriptors in time and frequency domains
and features extracted from decomposed EDA signals, which de-
scribe the signal’s phasic and tonic components (i.e., the faster and
slower components of the EDA signal, respectively). A more de-
tailed description of the features and the feature-extraction process
is available in Gjoreski’s Ph.D. thesis [5, Ch. 3].

In this work, we analyse only some of those features: the aver-
age ST, the average HR, the standard deviation of the R-R intervals
(SDNN – an HRV feature), the power of the EDA peaks (average
amplitude of the peaks in one window, describing the phasic compo-
nent), and the Inter-Subject Correlation (ISC) based on the average
EDA signal (related to the tonic component). Higher inter-subject
correlation is related to synchronised engagement between students
[17].

Physiological signals’ ranges and values vary between people,
which does not directly allow for comparing their signals. Thus,
the physiological signals need to be standardised to compare the
participants. We normalise the different signals using the following
formula, also called min-max normalisation [1, Ch. 5]:

𝑥 ′ = 𝑥−𝑚𝑖𝑛 (𝑥 )
𝑚𝑎𝑥 (𝑥 )−𝑚𝑖𝑛 (𝑥 )

In the equation, x stands for the starting signal value, x’ for the
normalised signal value, and min() and max() for the minimum and
maximum signal values for each session for each individual. Signals
with negative values were shifted into the positive-value range by
adding abs(min(x)) to every sample in the signal. Therefore, the
final values of all signals were between 0 and 1.

4 RESULTS AND DISCUSSION
This section will show our preliminary analysis of the features
related to each physiological signal available in LAUREATE. We
will evaluate each signal’s quality by examining the differences
between the different types of sessions and follow them with a brief
discussion. First, we will cover the ST signal. Then, we will explore
heart rate and HRV features. Finally, we will finish our analysis
with the EDA features. The study of the accelerometer signal is out
of the scope of the present work.

4.1 Skin temperature
Figure 2 shows the mean skin temperature of all of the partici-
pants in two different recording sessions. Because session blocks
(in particular, breaks) differ in length and the moment they occur,
we show their impact by presenting the signal with two examples,
as an aggregated visualisation would not allow for this.

Both figures 2a and 2b show the effects of room temperature
on skin temperature. At the beginning of the session, when par-
ticipants enter the classroom, there is a period of adjustment to
the new ambient temperature. Data collection was done during the
March-June period in the northern hemisphere (i.e., late winter and
spring), with classrooms typically heated. The images show that
the classroom temperature was effectively higher than the ambient
temperature where the students came from (e.g. hallway, outdoors).
We can also see the impact of breaks on skin temperature: as a
consequence of some students leaving the classroom, skin tempera-
ture abruptly drops. Nevertheless, the values never reach the initial
levels, probably because not all students left the classroom.

Given these results, in some of the following comparisons, we
decided to distinguish between the types of class blocks: class-start,
class-after-quiz and class-after-break. Findings like these demon-
strate the need for in-the-wild datasets. For example, many studies
suggest the existence of a clear relationship between affective states
and skin temperature, e.g., colder extremities, due to blood-flow
redirection towards the vital organs during a stressful event. How-
ever, our data show that the spatial and temporal contexts also play
a significant role.

4.2 Heart Rate and HRV
Figure 3a shows students’ mean SDNN (HRV feature) during 10
minutes of each session. Because the shortest quiz is 10 minutes
long, we compare the different sessions over that period length.
Furthermore, to avoid possible differences arising from students’
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(a) (b)

Figure 3: Min-max normalised mean SDNN (with shaded 95% confidence interval) of all students. The lines represent the
different blocks, i.e. quizzes, exams and classes. Fig. a only shows the mean from the first 10 minutes of the sessions. Only
class-start blocks are considered for classes, but not class-after-break nor class-after-quiz blocks. Fig. b shows the mean from
90 minutes of all recording sessions. Only exam and class sessions (including all the different class blocks) are considered.

Figure 4: Distribution of mean heart rate values from lecturers’ both hands. Values are min-max normalised per lecturer per
session. Fig. a shows the comparison between all classes, exams and quizzes blocks. Fig. b shows data from the first 10 minutes of
each block type. Fig. c shows data from the first 10 minutes of each recording session, i.e., only class-start blocks are considered,
and neither class-after-quiz nor class-after-break blocks are used.

Figure 5: Distribution of the power of the peaks for the electrodermal activity. Fig. a shows the comparison between all classes,
exams and quizzes blocks. Fig. b shows data from the first 10 minutes of each block type. Fig. c shows data from the first 10
minutes of each recording session, i.e., only class-start blocks are considered, and neither class-after-quiz nor class-after-break
are used.

adaptation to the classroom ambient (i.e., sitting after being phys-
ically active while walking to the classroom), we only consider
the first 10 minutes of each session. In addition, we only use class-
start blocks, and we do not use class-after-quiz nor class-after-break
blocks.

Figure 3 shows that students have, on average, a higher heart-
rate variability when they are in a class block compared to an exam
or quiz. Lower HRV values correlate with periods of higher stress,

cognitive load and attention [6, 8, 13], like those happening at the
start of an examination (quiz, exam). The difference decreases at the
end of the 10-minute periods, possibly due to students’ relaxation
after the stressful initial period of facing an examination.

After the findings of Figure 3a, we decided to see if the differences
in heart rate variability were maintained over long periods. Figure
3b shows the mean HRV of all students during 90 minutes of a
recording session. Therefore, we only consider sessions with exam



Exploring LAUREATE UbiComp/ISWC ’22 Adjunct, September 11–15, 2022, Cambridge, United Kingdom

Figure 6: Inter-subject correlation of all students from a ses-
sion with pre-quiz, quiz and class blocks. The shaded area
represents the standard deviation.

and class (class-start, class-after-quiz, class-after-break, and break
included) blocks. We can observe in Figure 3b that when comparing
classes and exams, HRV is consistently lower in the latter. Still, the
HRV values for both conditions increase as time passes.

Figure 4 shows the distribution of themean heart rate values from
lecturers’ both hands. The values are normalised for each lecturer
per session. Figure 4.a shows the comparison between all class, exam
and quiz blocks, regardless of length and occurrence in a session.
Figure 4.b shows the comparison between the first 10 minutes of
each session, i.e. Here, we consider the 10-minute periods after a
quiz or break as a class block. Figure 4.c only considers class-start
blocks and not the class-after-quiz nor class-after-break blocks.

Figure 4 shows that lecturers’ mean heart rate values are gener-
ally not affected by the block type. The differences in Figure 4.a may
be attributed to exam sessions being longer than class (which are
interrupted by breaks) and quiz sessions. class blocks are an active
period for lecturers, as they walk and gesture while presenting. On
the other hand, exam blocks are calmer, as the lecturers only react
to questions from the students. When considering only 10 minutes
of data, as in Figure 4.b and Figure 4.c, the difference between the
block types disappears. A possible reason for this in the exam condi-
tion is that we are considering shorter length periods. A 10-minute
period does not give the lecturers enough time to decrease their
heart rate since the start of the exam, which entails prior physical
activity (e.g. arriving to the classroom, setting out the desks and
exams, sitting students).

4.3 Electrodermal Activity
Figure 5 shows the distribution of the power of the peaks of the
EDA signal across all sessions. The categorisation resembles the
one found in Figure 4: Figure 5.a shows the mean calculated over
the entire length of all blocks (class, exam, quiz), Figure 5.b shows
the mean calculated over the first 10 minutes of each block type,
and in Figure 5.c we only consider class-start blocks, discarding
class-after-quiz and class-after-break blocks.

Figure 5.c shows that the first 10 minutes of a recording ses-
sion are similar for the students, irrespective of their situation
(class, exam, quiz). As room temperature impacts sweating rate
measurements, we justify this similarity due to the adaptation of
the students to the classroom ambient, as previously discussed in
Section 4.1 "Skin temperature". Therefore, we believe that Figure
5.a is the most suitable way to compare the power of the peaks
of electrodermal activity in longer sessions, i.e. while comparing

classes and exams1. As Figure 5.a considers the entire class and exam
sessions length, students had enough time to adapt to the classroom
ambient. Therefore, we could posit that the difference seen in the
data distribution occurs due to the change in conditions. We can
see that in the exam condition, the power of the peaks tends to have
higher values, representing a situation where the participants are
subject to more stressful conditions.

Figure 6 shows the inter-subject correlation (ISC) of the entire
class for the EDA signal during one recording session. The session
shown in the plot started with a quiz (including its preparation
phase, i.e. pre-quiz) and was followed by a class block. During the
first part of the class block, the lecturer focused on explaining the
correct answers for the quiz.

Figure 6 shows an increment in the ISC of the students’ sweating
rate in two moments of the recording session. Moments of higher
ISC are related to the synchronised engagement between the par-
ticipants [17]. The first peak in the signal occurs at the start of
the quiz. The increase in the signal is not visible immediately due
to two possible reasons. The first possibility is that electrodermal
activity responses are not instantaneous and occur sometime after
the stimulus. Nevertheless, the response’s delay is only a couple of
seconds [18], so it does not fully explain the delay seen in Figure 6.
The second and more substantial reason is that we calculated the
ISC values every 5 minutes to reduce processing time, as we offered
students visualisations of their data after each session. Therefore,
the response (increased sweating rate) to the stimulus (start of the
quiz) may be seen up to 5 minutes later. The second peak of the ISC
occurs during the explanations of the correct answers. We specu-
late that the students were highly engaged during these periods,
resulting in an increased ISC.

5 LIMITATIONS AND FUTUREWORK
The objective of the present work is to briefly introduce the dataset
to the research community. To demonstrate its possibilities, we
showed some examples with tentative explanations for the causes
of the results we visualised. Nevertheless, these preliminary anal-
yses lack the necessary rigour to make any stronger statement or
conclusion.

We believe that the dataset offers many possibilities in several do-
mains, including: human augmentation (e.g., memory augmentation
interventions), affective computing (e.g., modelling stress, cognitive
load and emotions), privacy (e.g., user identification), modelling
behaviour (e.g., exercise level monitoring, sleep and food intake
analysis) and learning performance (e.g., grade prediction), context
recognition (e.g., class vs exam vs breaks), multimedia signal anal-
ysis (e.g., speech and video processing), and the development of
multimodal machine learning algorithms (e.g., combining wearable,
audio and video data).

6 CONCLUSION
In this work, we introduced the LAUREATE dataset, a Longitudinal
multimodAl stUdent expeRience datasEt for AffecT and mEmory.
We described the data collection procedure and the dataset’s con-
tents in Section 3. We briefly showed the results of our preliminary

1Because quizzes are at most 20 minutes long, their distribution doesn’t vary much
between the different conditions.
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analysis and explained possible reasons for them in Section 4. We
consider that these results are a good indicator of the quality of
the data and its potential for the research community. Furthermore,
we believe that the dataset is versatile with applications in several
domains, some of them covered in Section 5.

The dataset still needs to be fully anonymised and cleaned before
release.We plan to make the dataset available upon request after the
signature of a sharing agreement. Please contact the main author
for updates on this matter.
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