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Abstract
Traditionally, mood is assessed by either considering phys-
iological data or smartphones-based self-reports. Physio-
logical data is objective and continuous, but difficult to be
collected in-field and lacks a subjective component. Smart-
phones provide subjective feedback and objective data,
but lack physiological data. We propose to combine smart-
phones as a rich sensor system and smartwatches as a
wearable heart rate monitor. Both serve as a platform for
reporting mood states. Within an explorative user study with
six subjects over four weeks, we collected smartphone data
and heart rate in addition to subjective ground truth via self-
reports. We assessed all three mood dimensions valence,
energetic arousal and calmness, but only consider valence
in the context of this paper. Analyzing the information gain,
we identified the relevance of temporal features (daytime,
weekday, type of day) as well as the heart rate. Decision
tree classifiers trained on the first three weeks and tested
on the fourth achieve recognition accuracies of up to 0.91.
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Introduction
Mood assessment is one important aspect in social sci-
ences as it can support monitoring and identifying state
changes, e.g. of patients suffering from personality dis-
orders [8]. Traditionally, it is assessed via self-reports on
smartphones or via physiological devices such as ECG
monitors. In lab settings, physiological devices yield fairly
good results [15]. However, this approach is difficult to be
transferred into real-world settings as clinical ECG devices
are neither mobile nor wearable.

We propose to combine smartphones and on-body ECG
sensors [3]. Smartphones are well-integrated into every-
day life and a rich sensor systems which is able to gather
a vast amount of personal data. Moreover, environmental
influences or contextual data such as recent events or inter-
actions can be logged. Wearable sensors, e.g. the personal
smartwatch or a mobile ECG sensor, provide additional
measurements.
We choose Moto 360 smartwatches as personal wearables
and ekgMove1 as a fallback option in case of malfunctions
and as a comparative means. Within a user study, we as-
sess mood and explore the applicability of smartphone and
heart rate features for subjective mood recognition.

Related Work
Physiological Approaches
Mood and biophysical human reactions have been shown to
correlate [16]. Heavily investigated are heart rate (HR) and
heart rate variability (HRV).
Ark et al. [1] compared the six basic emotions of Ekman [9]
shown via facial expressions with HR, among others. They
achieved recognition accuracies of up to 0.66.

1http://www.movisens.com/en/products/
ecg-and-activitysensor/

Nardelli et al. [15] studied correlations between valence and
arousal (circumplex model of affect [18]), and HRV to rec-
ognize mood in-lab. They achieved a recognition accuracy
of 0.85 on the valence dimension.
Valenza et al. [20] investigated correlations between four
emotional states, using valence and arousal, and the HR.
They achieved an accuracy of 0.79 in-lab. In another project,
the authors analyzed correlations between five values of
each valence and arousal and HR and HRV, among oth-
ers [21]. They gained an accuracy of over 0.9 in-lab.
Overall, related work showed that HR and HRV support the
distinction of affective states, especially in lab settings.

Mobile Approaches
Mobile devices offer a variety of sensors which allow to infer
contextual information. Several projects investigated their
applicability for recognition of affective states.
One well-known example is Emotion Sense [11]. It gathers
ground truth via self-reports and collects smartphone data
in the background. Afterwards, the app seeks correlations.
The authors want to make self-reports obsolete by having
found enough "psychological markers” in the data.
Another project is MoodSense [13] which focuses on com-
munication and interaction and used apps. They rely on the
circumplex model of affect and apply self-reports. Their ap-
proach achieved an initial accuracy of 0.66 which could be
improved to 0.93 after a two months training phase.
Mappiness [14] analyzes correlations between mood and
environmental data. This app asks for self-reports at ran-
dom moments while logging GPS positions. Afterwards,
each location is associated with objective spatial data and
correlations to the self-reports are reviewed. The results
show that on average a participant is happier outdoors than
in urban environments [14].
As shown, smartphones can reveal information related to
affective states and are suitable sensing systems.

http://www.movisens.com/en/products/ecg-and-activitysensor/
http://www.movisens.com/en/products/ecg-and-activitysensor/


Mood Assessment System – DesignSensor Features
Location Cell ID (CID); Lo-

cation Area Code
(LAC)

Current
app

App running in
the foreground;
empty if screen is
locked

Micro-
phone

Max. absolute
amplitude

Message
history

Unique caller
ID*, folder (inbox,
sent), message
length

Call
history

Unique caller
ID*, type (incom-
ing, outgoing,
missed), duration

Ambient
light

Light level in Lux

Connectiv-
ity type

Wifi, mobile or
none

Calendar
entries

ID of current
entry; calendar
name

Activity
type

Physical activity
(Google Activity
Recognition APIa)

Table 1: Selected sensor
sources and derived features.
* marks hashed values.

ahttps://developers.google.
com/android/reference/com/
google/android/gms/location/
DetectedActivity

Our approach is based on the mood assessment app
MoA2 [2]. It was extended to a two-part app designed for
Android and Android Wear as proposed in [3].

Data Assessment
Smartphones provide access to a wide range of sensors.
Table 1 lists the sensors considered in our approach. All
data is sampled at 1Hz. The smartwatch collects HR with
about 12Hz. The ekgMove samples HR with up to 1024Hz.

Mood Assessment
In addition to sensor values we assessed ground truth of
mood using self-reports. We selected a three-dimensional
model for which a digitalized, standardized questionnaire
exists. This model describes mood as a combination of va-
lence (V, positive-negative), calmness (C, restless-relaxed)
and energetic arousal (E, tired-awake) [19, 22]. It is based
on the Multidimensional Mood Questionnaire (MDMQ) and
consists of a six-item short scale to measure the three di-
mensions. Figures 1 and 2 show the mood assessment on
(a) a smartphone and (b) a smartwatch.

Self-reports were prompted time-triggered, event-triggered
or voluntary.
Time-triggered: every full hour between 9a.m. and 10p.m.
Event-triggered: if one of the following situations occurs:
a) a calendar entry starts or ends; b) connectivity is lost or
re-established; c) a message is sent or received; d) a call
has ended (incoming or outgoing).
Voluntary Subjects were free to report their mood anytime.

We added constraints to avoid too many prompts. a) con-
nection changes can only trigger prompts once per five
minutes and only if the screen is active; b) the time span
between two prompts is at least 15 minutes.

Mood Assessment System – Evaluation
We conducted a user study to evaluate our app in a real-
world setting. Based on collected data we investigated the
use of smartphone features and HR for mood recognition.

Study Design
-Subjects-
We recruited six subjects aged between 22 and 28, two of
them female. The age and gender distribution seems rea-
sonable: most wearable users are between 18 and 34, and
men and women are equally likely to equip wearables (cf.
Nielsen’s Connected Life Report from March 20142). Four
subjects are students, two employed in local businesses. All
of them participated voluntarily and were not paid.

One subject used their own Android phone and their own
Moto 360 smartwatch. Four of them used their own Android
phone but a Moto 360 provided by us. One possessed their
own Moto 360, but an iPhone. For this subject, we provided
a Google Nexus 4 phone. The subject was free to use it as
their own, i.e. use their own SIM card and install desired
apps. Moreover, every subject received an ekgMove.

-Procedure-
The study lasted four weeks. We met the subjects the day
before and after the study.

In the first meeting we explained the background of our
study, the data that will be collected, and what the subject
has to do or must not do. The subjects were supposed to
use their smartphone as usual. In addition, they were in-
structed to wear both the smartwatch and the mobile ECG
during the day. They were asked to take them off if neces-
sary, e.g. while doing sports to avoid artifacts in the data.

2http://www.nielsen.com/us/en/insights/news/2014/
tech-styles-are-consumers-really-interested-in-wearing%
2dtech-on-their-sleeves.html

https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
http://www.nielsen.com/us/en/insights/news/2014/tech-styles-are-consumers-really-interested-in-wearing%2dtech-on-their-sleeves.html
http://www.nielsen.com/us/en/insights/news/2014/tech-styles-are-consumers-really-interested-in-wearing%2dtech-on-their-sleeves.html
http://www.nielsen.com/us/en/insights/news/2014/tech-styles-are-consumers-really-interested-in-wearing%2dtech-on-their-sleeves.html


However, they were asked to run our app as often as pos-
sible. They were asked to answer the MDMQ whenever a
self-report prompt appears. We informed our subjects that
they might drop out of the study whenever they want if they
feel uncomfortable. Next, we asked the subjects to sign a
consent form. Afterwards, we installed our app on the sub-
ject’s Android phone and set up the Moto 360 smartwatch
and the ekgMove. We explained how to wear both for cor-
rect measurements so that subjects could put both of them
on and off by themselves.

Figure 1: Screenshot of the
Android app.

Figure 2: Exemplary screenshot of
one of three screens of the Android
Wear app.

In the final meeting each subject was asked to fill out a
feedback questionnaire. We asked for demographic data
and their experience of using our app. Afterwards, we handed
out the System Usability Scale (SUS) [6] to assess the us-
ability. At the end, we asked about the comfort of using the
app both quantitatively and qualitatively. Within this meeting
we also exported the collected data.

Usability and User Experience Feedback
We analyzed the quantitative and qualitative user feedback
in terms of usability and user experience.

Our app gained a median SUS score of 88.75 which results
in an adjective rating of excellent [4].
Five subjects reported that the usage of our app was pleas-
ant. All subjects found the introduction to the app easy. Two
subjects rated the mood report via smartphone as easy,
three as neutral and one as complex. Fittingly, four of them
solved this task fast, two neutral. Three subjects rated the
mood report via smartwatch as easy, two neutral and one
complex. However, four subjects said it could be done fast,
though two said the duration was higher.
Three subjects rated our app as helpful, the others were
neutral about its general usability. Five subjects liked that
our app can be used easily due to its simple interface with
one frame containing everything relevant. Two of them dis-

liked the increased battery consumption or short battery life,
respectively. This applies especially to the smartwatches.
Three subjects reported that the complexity of using the
ekgMove was easy, two were neutral about it, and one said
it has been complex. Nevertheless, three of them rated the
comfort of wearing it as uncomfortable.
Overall, the feedback confirms a high usability and comfort
of our approach and its suitability for in-field studies.

Overview of Collected Mood Data
The focus of our user study was to collect mood data. First
of all, we got an overview of the reported mood values per
subject. We identified Min, Max, Mean and Standard De-
viation (SD) for each of the three dimensions as shown in
Tables 3, 4 and 5. Apparently, most subjects used the full
range from 0 to 6 to state their valence, energetic arousal or
calmness. However, subject 2 and 6 did not max out both
valence and calmness which might influence the accuracy
of a mood recognition system.

Next, we analyzed response times and prompting triggers
to get a better understanding of the prompting of our app
and the response behavior.
On average, subjects needed 60s (±20.6s) to react to the
prompt and answer the mood questionnaire. Taking into
account that the study lasted four weeks this means that
the subjects tried to react to our notifications in a timely
manner.
A proportion of prompt triggers is shown in Table 2. Pri-
marily, each subject answered the mood questionnaire due
to time-triggers. However, especially calendar events and
phone calls as well as the connectivity state of the device
resulted in prompting self-reports for many subjects. SMS
were barely important. Two subjects received none at all.
All subjects chose to voluntarily report their mood but with
varying frequency.



Subject 1 2 3 4 5 6
Start of calendar event 4% 19% 8% 3% 10% 13%
End of calendar event 3% 11% 1% 3% 6% 7%
End of phone call 1% 3% 11% 16% 15% 3%
Connection lost 10% 10% <1% 5% 3% 6%
Connection renewed 3% 1% 1% 6% 3% 5%
New SMS message 2% 0% 1% 6% 6% 0%
Voluntary 8% 10% 26% 1% 7% 5%
Time-dependent 67% 46% 52% 59% 51% 61%

Table 2: Percentage share of all trigger types that caused
self-report prompts.

Valence
Subj. Min Max Mean SD
1 1 6 3.32 0.92
2 2.5 6 5.38 0.76
3 0 6 4.63 1.02
4 0 6 4.1 1.07
5 0.5 6 4.62 1.1
6 0 4.5 2.22 0.93

Table 3: Overview of the
valence values per subjects.

Energetic Arousal
Subj. Min Max Mean SD
1 0 5 2.72 0.83
2 1 6 4.54 1.06
3 0 6 4.11 1.28
4 0.5 6 3.98 1.25
5 1 6 4.18 1.16
6 0 6 3.46 1.42

Table 4: Overview of the
energetic arousal values per
subjects.

Calmness
Subj. Min Max Mean SD
1 0.5 5,5 3.17 0.91
2 3 6 5.46 0.78
3 1 6 4.02 1.1
4 0,5 6 4.03 1.14
5 0.5 6 3.94 1
6 2 6 4.83 0.84

Table 5: Overview of the
calmness values per subjects.

Explorative Analysis
We analyzed the collected data exploratively and examined
classifiers built upon this data to rate its usefulness.

-Preprocessing-
In preparation of further analysis, we preprocessed some
features. The timestamp has been replaced by day of week
(e.g. Monday or Friday), type of day (weekday vs. week-
end) and daytime (e.g. noon or evening). The lux values of
the ambient light level have been factorized into categories
according to the Microsoft Developer Network3 (e.g. pitch
black or direct sunlight). The recognized activities were cat-
egorized as motion or stillness. The measured HR values
were divided into blocks of ten, i.e. values between 50 and
59 are stored as 50, values between 60 and 69 as 60, etc.

We decided to focus our mood analysis on the valence di-
mension as it is frequently considered separately in related
work [15, 20]. Valence values were split up into three cate-
gories: low, neutral, and high as used in [23].

3https://msdn.microsoft.com/en-us/library/windows/desktop/
dd319008%28v=vs.85%29.aspx

The values 0 to 1.5 were replaced by low, the values 2 to 4
by neutral and the values 4.5 to 6 by high. We chose these
ranges as they allow a fair share between low, neutral and
high: all of them cover about the same range except for
the middle value, 3, which was assigned to neutral. Table 7
gives an overview of the distribution of valence values per
subject.

We exported HR measurements from the ekgMove sensors
using the movisens SensorManager. Based on these mea-
surements, we extracted HRV using the movisens DataAn-
alyzer. These features are namely HrvHf, HrvLf, HrvLfHf,
HrvPnn50, HrvRmssd, HrvSd1, HrvSd2, HrvSd2Sd1, HrvS-
dnn, HrvSdsd which are described in detail in the DataAna-
lyzer manual4. Afterwards, the extracted HRV features were
synchronized with the reported valence via their times-
tamps. To get a glance of the quantity of the HRV mea-
surements, we counted the number of values as shown
in Table 8. Apparently, there is a strongly varying quality de-
pending on each subject. This might be caused by wrongly
worn sensors or incorrect usage of the sensors.

-Feature Ranking-
After the preprocessing, we analyzed the importance of
the collected and generated features. For this purpose, we
calculated the information gain of each smartphone feature
and the smartwatch HR measurements. Table 6 shows the
five best features per subject. Although all values are rather
small, temporal attributes (day of week, daytime) and the
smartwatch’s HR values have the highest information gain.
They can be considered most relevant among the set of
features. Interestingly, all of them can be collected using
the smartwatch only what should be investigated further in
future experiments.

4http://www.movisens.com/wp-content/downloads/
DataAnalyzer_Manual_EN.pdf

https://msdn.microsoft.com/en-us/library/windows/desktop/dd319008%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd319008%28v=vs.85%29.aspx
http://www.movisens.com/wp-content/downloads/DataAnalyzer_Manual_EN.pdf
http://www.movisens.com/wp-content/downloads/DataAnalyzer_Manual_EN.pdf


Subject 1 Subject 2 Subject 3
0.105 day of week 0.094 day of week 0.061 day of week
0.063 daytime 0.066 daytime 0.046 heart rate
0.04 type of day 0.023 heart rate 0.028 daytime
0.022 heart rate 0.005 type of day 0.013 type of day
0.003 location 0.001 number of calendar entries 0.002 number of calendar entries

Subject 4 Subject 5 Subject 6
0.07 day of week 0.078 day of week 0.122 day of week
0.036 daytime 0.067 daytime 0.031 daytime
0.013 heart rate 0.032 heart rate 0.029 heart rate
0.008 type of day 0.023 type of day 0.003 location
0.003 number of calendar entries 0.005 location 0.001 type of day

Table 6: Top 5 of the 13 features with the hightest information gain per subject.

Subj. Low Neutr. High
1 11 304 46
2 0 26 290
3 11 83 293
4 7 162 170
5 2 82 144
6 59 127 4
Avg. 15 131 158

Table 7: Number of times each
valence level was reported by
each subject and on average.

Subject Number
1 826
2 5,716
3 7,095
4 2,353
5 43
6 3,971

Avg. 3,334

Table 8: Number of HRV
values extracted from ekgMove
per subject and on average.

Mood Recognition
To explore how well the gathered features can be used to
recognize mood we trained and tested personalized deci-
sion tree classifiers.

For each subject, we built three different types of decision
tree models based on:

1. all smartphone features

2. all smartphone features plus Moto 360 HR values

3. all HRV features extracted from ekgMove ECG val-
ues

There are slight variations among the decision trees we
used. For subject 1, 2, 5 and 6 we built J48 decision trees
based on the C4.5 algorithm [17] for all models. Due to
computational limitations we had to use a SimpleCART [5]
for subject 3 and a LADTree [12] for subject 4 for the first
two models and J48 for the third. All trees have been trained
with data of the first three weeks and tested with the data of
the fourth. The results are displayed in Figure 3.

For subject 1, 3 and 6, the models trained on smartphone
data yielded better recognition accuracies than those based
on HRV data. The model considering smartphone and
smartwatch data achieved the highest recognition rates
of all three models for subject 2. For subject 4 and 5 the
accuracies of the HRV-based trees could not be reached.

On average, all models achieved almost the same recog-
nition accuracy: decision trees based on smartphone data
achieved 0.69, those for smartphone data and smartwatch
HR 0.68 and those based on ekgMove HRV data 0.68.

It is visible that the influence of HR measurements, gath-
ered by Moto 360, as well HRV, extracted from ekgMove,
on the recognition accuracy varies for each subjects and is
related to their number of measurements (cf. Table 8). Sub-
ject 5 is a prominent example with almost no HRV data but
high recognition accuracies for the HRV -based model.
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Figure 3: Visualization of the recognition accuracies for all three different dataset types.

We expected higher recognition accuracies for the model
built upon HRV data as it proofed useful in related work [15]
in which authors reported a recognition accuracy of 0.85 on
the valence dimension in a controlled environment. Though,
this rather low value can be explained by considering arti-
facts like movement which influence both the quality of the
measurement itself and the derived HRV values.

Overall, the approach looks promising. Recognition ac-
curacies are comparable to those of MoodSense which
achieved 0.66 first and 0.93 after a two month training pe-
riod. However, high recognition accuracies are to be treated
carefully. As shown in Table 7, the valence classes are usu-
ally not equally distributed. Predicting the most common
class may already yield high recognition accuracies.

A mood recognition running on personal wearables and
based on their measurements appears possible. At least for
some subjects, it is sufficient to rely on data gathered by the
Moto 360 and neglect additional sensors such as ekgMove.

Conclusion
We presented a first approach to realize a mood assess-
ment combining smartphone and physiological data as in-
troduced in [3]. Physiological data was collected using a
commercial smartwatch (Moto 360) and, as a fallback, a
wearable ECG monitor (ekgMove). In an explorative study
we collected data from six participants over four weeks. As
ground truth for mood subjects were asked to answer the
MDMQ digitally via smartphone or smartwatch.

Subject feedback confirms a high usability of our app with
a median SUS score of 88.75 and reports a high comfort of
wearing the Moto 360 in contrast to the ekgMove.

To examine the quality of the gathered data and the useful-
ness of smartphone and ECG data, we ran different anal-
yses. Within this paper, we only considered the valence
dimension of mood. Temporal attributes (daytime, weekday,
type of day) and HR showed a high information gain and
appear relevant. It is worth notable that all of them can be



gathered using smartwatches only. Decision trees trained
on the first three weeks and tested with the fourth show
high recognition accuracies of up to 0.91. These results
have to be interpreted with caution. In case of imbalanced
datasets, the recognition accuracies might already be very
high by just returning the most common class. However,
this knowledge can be used to build reliable classifiers for
the most common mood to implement an anomaly detec-
tion system, e.g. for monitoring state changes of patients
suffering from depression.

Based on user feedback and our explorative analysis, we
conclude that our app in combination with a commercial
smartwatch is applicable for mood assessment in real-world
settings.

Future work should investigate the combination of temporal
attributes and HR in a longer time frame and with a higher
number of subjects. A clinical setting with patients suffering
from mood-related personality disorders might be interest-
ing to investigate. In addition, it might be useful to examine
new sensor sources, e.g. the microphone (noise level) and
ambient light sensor of the smartwatch as they might yield
better results than the corresponding sensors embedded in
the smartphone. Moreover, location should be considered
in a more complex way. Instead of only considering the raw
location, the land use could be considered [7] or locations
could be categorized, e.g. as shops and restaurants, re-
lated to the Google Places API5 as used in [10].
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