
The Affinity Platform: Service-Oriented Architecture Based on
Abstraction of Connection

Alexandru Ardelean∗
aard@itu.dk

IT University of Copenhagen
Copenhagen, Denmark

Kuderna-Iulian Bent,a∗
benta@cs.ubbcluj.ro

Babes, -Bolyai University
Cluj-Napoca, Romania

Figure 1: Representation of a distributed software system engineered using the Affinity Platform†

ABSTRACT
The Affinity Platform is an innovative Software as a Service or-
chestration system designed for building Service-Oriented software
solutions. It challenges the modularity of regular software frame-
works and microservice architectures by abstracting the connectiv-
ity layer between two services.

The main benefit of utilizing this approach is that components
designed to communicate through a specific interface can be easily
routed to handle this communication over a different medium. A
service could extract health data from a smartwatch, use Bluetooth
connectivity to send it to a smartphone for pre-processing, and the
result can then be transmitted over HTTP to a server for centraliza-
tion (Figure 1). All this would be possible without requiring services
to agree on a specific communication protocol or data format.
∗Both authors contributed equally to this research.
†A git repository with easy to try out examples is available at the following URL:
https://github.com/alexander34ro/affinity-examples

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8076-8/20/09. . . $15.00
https://doi.org/10.1145/3410530.3414371

The capabilities of the platform were enhanced to assist the
development of a multi-modal solution for monitoring patients in
a constantly changing environment.

CCS CONCEPTS
• Computer systems organization → Interconnection archi-
tectures; Peer-to-peer architectures; • Software and its engi-
neering → Software as a service orchestration system; Inte-
grated and visual development environments; Search-based
software engineering; Automatic programming.

KEYWORDS
Service-Oriented Architecture; Dataflow Programming; Software
Platform; Language Agnostic; Visual Development Platform; Auto-
matic Programming

ACM Reference Format:
Alexandru Ardelean and Kuderna-Iulian Bent,a. 2020. The Affinity Platform:
Service-Oriented Architecture Based on Abstraction of Connection. In Ad-
junct Proceedings of the 2020 ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the 2020 ACM International
Symposium on Wearable Computers (UbiComp/ISWC ’20 Adjunct), Septem-
ber 12–16, 2020, Virtual Event, Mexico. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3410530.3414371

https://doi.org/10.1145/3410530.3414371
https://doi.org/10.1145/3410530.3414371

UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico Ardelean and Bent,a

1 INTRODUCTION
The Affinity Platform is an experiment meant to move forward
the idea of constructing software systems by assembling together
reusable modules, akin to architecting buildings out of Lego blocks.

The Affinity Platform is a framework for building parallel and
distributed software systems composed of independent services
[20] organized in the form of data flows and connected through
abstract channels of communication. This is similar to the way a
message broker would behave, but the Affinity Platform takes it up
a notch by introducing multiple brokers for various standards of
communication. Not having to implement separate logic to handle
the connection with other services means that Affinity components
[5] are light, highly reusable, and easily reconfigurable.

1.1 General functionality and reasoning
The Affinity Platform achieves its functionality by capturing the
standard input and output of a component and routing them to
external services dedicated to sending and receiving data through
various interfaces. Services are connected through abstract channels
in which additional components can be interpolated to change the
medium and the format of communication.

Using the Affinity Platform, developers can construct diagrams
of their applications using a visual interface inspired by dataflow
programming [17]. This, in turn, enables for facile parallelization
of these channels, and a simplified flow through which different
services can be easily distributed across a range of hardware devices.
Support for any protocol and data format can be added through the
Software as a Service [21] component of the platform.

The Affinity Platform can support a plethora of operating sys-
tems and hardware devices and can integrate services written in
any programming language. The Platform was made possible by
recent advancements in the JavaScript programming language [11].

The potential applications of the Affinity Platform are in:
• Internet of Things: where services are distributed over
various devices with different communication interfaces and
operating systems [15].

• Intelligent Agents: more specific, multi-agent systems,
as they are usually developed using dataflow programming
and require strong communication between agents [2].

• Software Engineering: since the platform can increase
the modularity of software systems, and better encapsulate
components and their dependencies [5].

1.2 Identifying common development patterns
through dataflow optimization

Abstracting the communication channel between two components
brings along with it innovations that were previously much harder
to integrate into a software system. Context-aware applications [19]
are an emerging field of study concerned with apps that alter their
behavior based on factors from the surrounding medium. This can
be achieved through the Affinity Platform by interpolating smart
components that transmit the information to a different branch
of the data flow based on context information. Through smart
components and machine learning the Affinity Platform can allow
applications to adapt to different scenarios in ways that were never
seen before.

The Affinity Platform makes use of dataflow programming and
component-based software engineering [6] to facilitate the devel-
opment process of software systems. A component is abstracted as
a data-processing unit with multiple channels for input and output
and various configuration options. It only requires the specifica-
tion of a manifest file that describes the interface of these channels
and the possible configuration options. Any software application
capable of extracting, processing, or delivering data over a standard
output can become a component of the Affinity Platform.

The Affinity Platform can be seen as an additional layer on top
of conventional software systems. It doesn’t care what language
a component was written in (language agnostic), what operating
system it runs on (OS agnostic) or what protocol it uses to commu-
nicate (protocol agnostic). Offering this level of abstraction means
that developers have less to worry about when it comes to the
implementation details of their systems. Given a sufficiently large
repository of components, Affinity systems could be entirely built
from already developed components without requiring hard soft-
ware development knowledge.

2 RELATEDWORK
As a Service-Oriented framework extendable through custom com-
ponents but with a particular focus on a few key areas, the Affinity
Platform can be anchored in multiple fields of study and compared
from various points of view.

The first perspective is in terms of its capabilities as a platform,
how it compares to other solutions aimed at bringing together
components that can be assembled into modular systems.

Other perspectives analyze how the Affinity Platform can pro-
duce systems capable of replacing dedicated solutions for specific
areas of interest. These include to a certain degree mechanisms for
managing and coordinating sensing devices, as well as frameworks
for developing intelligent agents and handling communication in
multi-agent systems [3].

This paper will discuss only how the Affinity Platform compares
to frameworks for managing sensing devices and how it relates to
other service-oriented architectures.

2.1 Modular architectures for managing
sensing devices

A critical comparison is made to the Sentio framework [10], a
middleware for accessing remote sensors that, in its field, achieves
functionality more complex than that of the Affinity Platform but
in a less modular and user-friendly way. The main capabilities of
Sentio include virtualization of sensors and selection and allocating
sensors based on contextual information and resource availability.

A significant number of these are functionalities that could be
achieved through the Affinity Platform as its repository of compo-
nents expands with the help of the community. To better understand
the differences between the Affinity Platform and Sentio, its main
alternatives, RIO [1], Beetle [18], and BraceForce [23], are also
included in the comparison from Table 1.

Components that offer support for the Bluetooth Low Energy
standard and native sensor selection are currently under devel-
opment (−). Still, this highly-demanded functionality can also be
achieved through custom-developed components.

The Affinity Platform: Service-Oriented Architecture Based on Abstraction of Connection UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico

Table 1: Comparison of the Affinity Platform in the field of frameworks for managing sensing devices

RIO [1] Beetle [18] Braceforce [23] Sentio [10] This approach [4]
Deployable with unmodified OS ✗ ✗ ✓ ✓ ✓

Code offloading ✗ ✗ ✗ ✓ ✓

Sensor composition ✗ ✗ ✗ ✓ ✓

Sensor selection ✗ ✗ ✗ ✓ −

Support for more than two devices ✗ ✗ ✓ ✓ ✓

Concurrent sensor access ✗ ✓ ✓ ✓ ✓

BLE peripherals ✗ ✓ ✗ ✗ −

Reconfigurable systems and subsystems ✗ ✗ ✗ ✗ ✓

Dynamic sensor switching ✗ ✗ ✗ ✓ ✗

Where Affinity systems excel is the partitioning into intercon-
nected subsystems. Individual components can be more easily
shared and reused as connectivity with other components is of-
floaded to the platform. Affinity subsystems can be reconfigured
and reconnected to maximize their utility.

2.2 Platforms for software development
In terms of modularity and reusability, the present platform has the
same advantages as other plugin architectures, component-based
architectures, and service-oriented architectures. The disadvantage
that the Affinity Platform tries to address is that of restrictive com-
munication. Web 2.0 [9] was based on rigid APIs and is breaking;
the Affinity Platform is trying to solve this problem by abstracting
away the communication layer. This philosophy allows applications
to delegate the communication responsibility to modular compo-
nents that can be easily reconfigured to support different protocols
and data formats. This approach prolongs the effective life of com-
ponents and increases their reusability.

The Affinity Platform operates under the Node.js JavaScript
runtime [12] and uses terminal emulators such as Termux [22] to
port its functionality to a wide range of devices. A custom version of
the Chimera framework [14] is used as the underlying mechanism
for linking components together.

An in-depth comparison of the systems and tools considered
when building the Affinity Platform was previously presented [4].

3 CORE IDEAS
3.1 General
The Affinity Platform is built on the concept of fully independent
components. They are considered the building blocks of Affinity-
developed software systems but are fully capable of operating indi-
vidually, not just as part of a parent system. Due to this fact, software
systems designed using the Affinity Platform tend to closely follow
core software engineering principles such as being low in coupling
and high in cohesion.

Engineering and developing distributed software systems from
scratch is not the only use case for which the Affinity Platform
was designed. Software systems don’t have to be created around
components from the beginning to make use of the advantages
of the Affinity Platform. Since components are independent of
the communication layer, developers have the ability to use the

platform to extend applications that were not specifically designed
to be composed.

More specifically, this is achieved by transforming the applica-
tion into a black-box component and defining its communication
channels in a manifest file. The Affinity platform can then redirect
the standard inputs and outputs of the program and connect them
to those of other components. This trait enables new functionality
to be added even to legacy systems that were not designed with
extensibility in mind. The Affinity Platform takes regular software
programs and uses them as services, reconnecting their standard
communication channels to other components/services.

3.2 Device-agnostic, protocol-agnostic, and
format-agnostic

Abstracting the communication layer into separate services means
that software systems built with the Affinity Platform are protocol-
agnostic and format-agnostic. A system that uses SOAP to connect
its services could easily make the transition to HTTP, and from
HTTP to a new standard. They are also not limited to a single
data format, and, with additional services, can make the transition
from XML to JSON or YAML. Moreover, they could even adapt to
alternative communication mediums, being able to go from using
the Internet to Bluetooth or NFC.

Using independent components also means that the Affinity
Platform scores high in terms of compatibility. Any application can
be easily integrated into the platform as long as it can be invoked
from the command line or is actively listening for data. Themanifest
file defines a number of input channels and output channels for the
component, together with a set of configuration options that can
be changed by the user.

The inter-compatibility of input and output channels is not
guaranteed as components are not limited by the communication
medium or data representation. These are left as choices for the
developers, and they are not imposed as a responsibility of the
component. Developers can quickly achieve compatibility between
different services by defining inputs and outputs that support differ-
ent data representations or by incorporating additional components
to act as translators between common data representations or com-
munication mediums.

UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico Ardelean and Bent,a

Figure 2: Affinity web user interface, example of building the system from Figure 4

3.3 Dataflow programming and user interface
The way inputs and outputs are connected is described in a CHIML
[13] configuration file that is processed using a modified version
of the Chimera framework [14]. In order to make writing these
files easier, the Affinity Platform employs a graphical user interface
(GUI) for generating CHIML configurations out of system diagrams
inspired by dataflow programming.

The editor used for designing diagrams is built using the mx-
Graph [16] JavaScript library, making advanced editing options
readily available. The current state of the visual interface used by
the Affinity Platform is presented in Figure 2. Developers can edit
the auto-generated scripts in case a lower level of control is desired.
More details regarding the compilation of diagrams into code are
available in previous work [4].

4 RESULTS
The Affinity Platform was envisioned during the development of
the main Affinity software application, a system for improving
the safety of driving routes in a multi-agent environment using
emotion sensing [8]. A simpler way of making the Affinity Emotion
Analyzer and its related algorithms available to the public was
desired. A high level of reliability and ease of use were also part of
the vision, making it possible for other researchers and developers
to extend and reuse this work in a way that does not add significant
overhead. The Affinity Platform comes as an answer to all these
requirements and challenges [7].

Due to using the Affinity Platform, the main components of the
Affinity ecosystem are exposed individually. For example, if some-
body wants to use just the Affinity Emotion Analyzer, they could
easily take its components out of the central system and integrate it
into their own system. This, together with other scenarios that were

tested, confirm that using the Affinity Platform can significantly
improve the reusability of software systems and their components.

4.1 Localized communication between
independent components

Figure 3 demonstrates a basic but relatable example of using the
Affinity Platform. It consists of three custom components running
on the same machine and doing the extraction, pre-processing,
and regression parts of an ML algorithm, with the help of built-in
Replicator and Logger components.

Custom components for directing the flow of data, like the Repli-
cator, are designed to have minimal impact on performance, using
low-level communication standards to pass data. As a result, the
Replicator can handle a theoretically unlimited number of output
signals. In this example, it is used to send the refined data to both
an emotion analyzer and a logger, allowing the direct comparison
between extracted features and detected emotions.

Figure 3: Emotion sensing in a basic setup

The Affinity Platform: Service-Oriented Architecture Based on Abstraction of Connection UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico

4.2 Distributed parallel sensing system
running on devices with limited resources

This is a complex but still controlled usage of the Affinity Platform,
consisting of a smartphone or a wearable sensing device connected
to a server, as represented in Figure 4.

Unlike the previous example, this time, the sensor data extraction
phase is happening on a smartphone with limited resources, and the
computationally intensive emotion recognition phase is offloaded
to a server. This example shows how easy it can be to modify
components designed to communicate locally and extend them to
work over the network.

Moreover, transmitting the data to a logger is now done in paral-
lel with the help of another component. This is another benefit of
using dataflow programming when assembling subsystems. Actions
that require multiple streams of data can be trivially parallelized.

Figure 4: Emotion sensing in a distributed and parallel setup

4.3 Real-life scenario using emotion sensing
for monitoring mobile patients

The capabilities of the platform are being showcased during the
development of a multi-modal [7] solution for monitoring patients
that move through multiple environments during a day. This sce-
nario consists of multiple multi-modal sensing setups that transmit
data to a centralization system. The Affinity Platform is being used
to tackle challenges like using different sensing devices and adapt-
ing the system’s structure based on the current environment. To
better understand the kind of problems the Affinity Platform was
designed to handle, a visual representation of the system design is
provided in Figure 5.

Each multi-modal system consists of two data extracting compo-
nents, one for accelerometer data and another one for heart rate
data. They are running on a secondary device (A), a smartwatch.
(A) uses Bluetooth to transmit the features it extracted to the pri-
mary device (B), a smartphone, where the prevailing emotion of the
patient is determined by a machine learning algorithm (the Affinity

Emotion Analyzer). The result is sent over via HTTP requests to a
remote server (C) for centralization and visualization.

Figure 5: Emotion sensing setup for a challenging dis-
tributed multi-modal scenario

4.4 Extending an emotion sensing application
developed independently

The Affinity Platform is currently being used to improve the modu-
larity of an already developed facial emotion recognition system
(FER). This systems tries to combine traditional emotional recogni-
tion methods with advanced machine learning.

In this scenario, the legacy FER software is being minimally
altered to allow it to switch between different emotion detection
algorithms and multiple machine learning models. This also means
that the FER application will be able to easily integrate other algo-
rithms and models in the future.

5 DISCUSSION
The results observed in this experiment are indicative of the po-
tential of the Affinity Platform. Nonetheless, these are only early
results and what could be accomplished goes beyond what was
exemplified in this experiment. Even though perfectly usable, this
tool is more of a proof of concept than a fully-fledged platform.
As with any new platform, the number of components available
through the Affinity Platform is limited at the moment. There is
hope that, with the help of the community and all the effort that
went into making it as easy as possible to add new components,
the situation will improve in the future.

UbiComp/ISWC ’20 Adjunct, September 12–16, 2020, Virtual Event, Mexico Ardelean and Bent,a

One of the advantages of the Affinity Platform is its ease of
use, not only for regular developers, but also for computer pro-
grams. Agents could be programmed to assemble software systems
using the Affinity Platform. Artificial Intelligence could be used
both inside the system to alter its structure and make smart deci-
sions, but also outside the system to select and connect the primary
components.

Stateless components or pure components are another interest-
ing idea evolved during the development of the Affinity Platform.
Alike pure functions, they are components that do not depend nor
alter the state of the larger system that includes them. Their input
consists of only immutable data, and their output is also unchang-
ing. As a result, for a given input, a pure component will always
provide the same output. This makes it easier to understand and
predict the behavior of a pure component and also to test and de-
bug a system composed of pure components. Together with easier
caching for the results, this makes purity an extremely desirable
quality for components. This is another good practice emphasized
by the Affinity Platform, as most of the proposed components fall
in the category of pure components. These include all intermediary
components (Refiner, Replicator) marked with orange, and com-
munication components (Sender, Receiver) marked with blue in
Figures 3, 4, and 5.

6 CONCLUSION AND FUTUREWORK
This paper discusses the practical and theoretical aspects of using
a Software as a Service orchestration system to develop complex
sensing setups. It goes over the implementation details of such a
system and the benefits observed in challenging real-life scenarios.
The ability to reuse parts of the system and the ease of use of the
Affinity Platform were both demonstrated in this work.

At this time, the Affinity Platform is built around the concept
of independent components. As a better understanding is gained
over the capabilities of these components, we start to see a future
where smart components can optimize the functionality of the
larger system over time. Components with the ability to dynami-
cally reshape the connections of the system that they are part of
are an exciting proposition. This development would facilitate the
engineering of context-aware sensing setups capable of altering
their inner configuration to adapt to their environment [6].

For example, a smart component could monitor the use of a
resource-hungry sensor and lower its polling rate when the bat-
tery level is getting low. A smart component tracking the battery
usage of each sensor of the system could use linear programming
algorithms to optimize the quality of the data relative to the power
requirements of the system. Similarly, in a multi-modal sensing
system, individual sensors could be turned on or off based on their
contribution in a specific environment.

REFERENCES
[1] Ardalan Amiri Sani, Kevin Boos, Min Yun, and Lin Zhong. 2013. Rio: A System

Solution for Sharing I/O between Mobile Systems. MobiSys 2014 - Proceedings
of the 12th Annual International Conference on Mobile Systems, Applications, and
Services (12 2013). https://doi.org/10.1145/2594368.2594370

[2] Mercedes Amor, Lidia Fuentes, and José M. Troya. 2004. A Component and
Aspect-Based Architecture for Rapid Software Agent Development. In Advances
in Artificial Intelligence - IBERAMIA 2004, 9th Ibero-American Conference on AI,
Puebla, Mexico, November 22-26, 2004, Proceedings (Lecture Notes in Computer

Science, Vol. 3315), Christian Lemaître, Carlos A. Reyes García, and Jesús A.
González (Eds.). Springer, 32–42. https://doi.org/10.1007/978-3-540-30498-2_4

[3] Patricia Anthony, Gan Soon, Chin On, Rayner Alfred, and Dickson Lukose. 2014.
Agent Architecture: An Overview. Transactions On Science And Technology (01
2014), 18–35.

[4] Alexandru Ardelean and Kuderna-Iulian Benţa. 2019. The Affinity Platform:
Modular Architecture based on Independent Components (S). 449–452. https:
//doi.org/10.18293/seke2019-208

[5] Kaur Arvinder and Kulvinder Mann. 2010. Component Selection for Component
Based Software Engineering. International Journal of Computer Applications 2
(05 2010). https://doi.org/10.5120/604-854

[6] Paolo Bellavista, Antonio Corradi, Mario Fanelli, and Luca Foschini. 2012. A
Survey of Context Data Distribution for Mobile Ubiquitous Systems. ACM
Comput. Surv. 44, 4, Article 24 (Sept. 2012), 45 pages. https://doi.org/10.1145/
2333112.2333119

[7] Kuderna-Iulian Benţa, Marcel Cremene, and Mircea Vaida. 2015. A multimodal
affective monitoring tool for mobile learning. https://doi.org/10.1109/RoEduNet.
2015.7311824

[8] Kuderna-Iulian Benţa and Mircea Vaida. 2015. Towards Real-Life Facial Expres-
sion Recognition Systems. Advances in Electrical and Computer Engineering 15
(05 2015), 93–102. https://doi.org/10.4316/aece.2015.02012

[9] Grant Blank and Bianca Reisdorf. 2012. The Participatory Web. Information 15
(05 2012). https://doi.org/10.1080/1369118X.2012.665935

[10] H. Debnath, N. Gehani, X. Ding, R. Curtmola, and C. Borcea. 2018. Sentio: Dis-
tributed Sensor Virtualization for Mobile Apps. In 2018 IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom). IEEE Computer So-
ciety, Los Alamitos, CA, USA, 1–9. https://doi.org/10.1109/percom.2018.8444605

[11] ecma. 2015. ECMAScript Language Specification 6th Edition / June 2015. Retrieved
July 6th, 2020 from http://ecma-international.org/ecma-262/6.0/

[12] OpenJS Foundation. [n.d.]. Node.js. Retrieved July 6th, 2020 from https://nodejs.
org

[13] G. F. Gunawan. 2019. Chiml. Retrieved July 6th, 2020 from https://github.com/
goFrendiAsgard/chiml

[14] G. F. Gunawan, M. Amien, and J. F. Palandi. 2017. Chimera — Simple language
agnostic framework for stand alone and distributed computing. In 2017 4th
International Conference on Computer Applications and Information Processing
Technology (CAIPT). 1–10.

[15] London Datastore Hendricks Drew. 2015. The Trouble with the Internet of Things.
Retrieved July 6th, 2020 from https://data.london.gov.uk/blog/the-trouble-with-
the-internet-of-things/

[16] JGraph. 2020. mxGraph. Retrieved July 6th, 2020 from https://jgraph.github.io/
mxgraph

[17] Wesley M.; J.R. Paul Hanna; Richard J. Millar Johnston. 2004. Advances in
Dataflow Programming Languages. Comput. Surveys 36, 1 (March 2004), 1–34.
https://doi.org/10.1145/1013208.1013209

[18] Amit Levy, James Hong, Laurynas Riliskis, Philip Levis, and Keith Winstein. 2016.
Beetle: Flexible Communication for Bluetooth Low Energy. In Proceedings of
the 14th International Conference on Mobile Systems, Applications and Services
(MobiSys).

[19] P. Makris, D. N. Skoutas, and C. Skianis. 2013. A Survey on Context-Aware
Mobile andWireless Networking: On Networking and Computing Environments’
Integration. IEEE Communications Surveys Tutorials 15, 1 (2013), 362–386.

[20] Microsoft. 2016. Chapter 1: Service Oriented Architecture (SOA). Retrieved July 6th,
2020 from https://web.archive.org/web/20160206132542/https://msdn.microsoft.
com/en-us/library/bb833022.aspx

[21] Salesforce. 2018. What is Software as a Service (SaaS). Retrieved July 6th, 2020
from https://www.salesforce.com/in/saas/

[22] Termux. [n.d.]. Termux - Android terminal emulator. Retrieved July 6th, 2020
from https://termux.com/

[23] Xi Zheng, Dewayne E. Perry, and Christine Julien. 2014. BraceForce: A Mid-
dleware to Enable Sensing Integration in Mobile Applications for Novice Pro-
grammers. In Proceedings of the 1st International Conference on Mobile Software
Engineering and Systems (Hyderabad, India) (MOBILESoft 2014). Association for
Computing Machinery, New York, NY, USA, 8–17. https://doi.org/10.1145/
2593902.2593907

https://doi.org/10.1145/2594368.2594370
https://doi.org/10.1007/978-3-540-30498-2_4
https://doi.org/10.18293/seke2019-208
https://doi.org/10.18293/seke2019-208
https://doi.org/10.5120/604-854
https://doi.org/10.1145/2333112.2333119
https://doi.org/10.1145/2333112.2333119
https://doi.org/10.1109/RoEduNet.2015.7311824
https://doi.org/10.1109/RoEduNet.2015.7311824
https://doi.org/10.4316/aece.2015.02012
https://doi.org/10.1080/1369118X.2012.665935
https://doi.org/10.1109/percom.2018.8444605
http://ecma-international.org/ecma-262/6.0/
https://nodejs.org
https://nodejs.org
https://github.com/goFrendiAsgard/chiml
https://github.com/goFrendiAsgard/chiml
https://data.london.gov.uk/blog/the-trouble-with-the-internet-of-things/
https://data.london.gov.uk/blog/the-trouble-with-the-internet-of-things/
https://jgraph.github.io/mxgraph
https://jgraph.github.io/mxgraph
https://doi.org/10.1145/1013208.1013209
https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://web.archive.org/web/20160206132542/https://msdn.microsoft.com/en-us/library/bb833022.aspx
https://www.salesforce.com/in/saas/
https://termux.com/
https://doi.org/10.1145/2593902.2593907
https://doi.org/10.1145/2593902.2593907

	Abstract
	1 Introduction
	1.1 General functionality and reasoning
	1.2 Identifying common development patterns through dataflow optimization

	2 Related work
	2.1 Modular architectures for managing sensing devices
	2.2 Platforms for software development

	3 Core ideas
	3.1 General
	3.2 Device-agnostic, protocol-agnostic, and format-agnostic
	3.3 Dataflow programming and user interface

	4 Results
	4.1 Localized communication between independent components
	4.2 Distributed parallel sensing system running on devices with limited resources
	4.3 Real-life scenario using emotion sensing for monitoring mobile patients
	4.4 Extending an emotion sensing application developed independently

	5 Discussion
	6 Conclusion and future work
	References

