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ABSTRACT
Recognizing human cognitive performance is important for
preserving working efficiency and preventing human error.
This paper presents a method for estimating cognitive per-
formance by leveraging multiple information available in
a smartphone. The method employs the Go-NoGo task to
measure cognitive performance, and fuses contextual and
behavioral features to identify the level of performance. It
was confirmed that the proposed method could recognize
whether cognitive performance was high or low with an
average accuracy of 71%, even when only referring to in-
ertial sensor logs. Combining sensing modalities improved
the accuracy up to 74%.

CCS CONCEPTS
• Applied computing → Consumer health; Psychology.

KEYWORDS
cognitive performance; Go-NoGo task; smartphone log; ma-
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1 INTRODUCTION
The World Health Organization (WHO) reports mental dis-
orders in a workplace cost the global economy US$ 1 trillion
per year in lost productivity1. It also reports work is good
for mental health, however negative working environment
may lead to health problems. Although identification of pos-
itive and negative effects of work is difficult, however peri-
odic screening of cognitive performance may help to judge
whether a person is upon positive effect by working or not
in workplace. Measuring cognitive performance also helps
to preserve productivity and prevent human error.
There are several screening methods for cognitive perfor-

mance such as Go-NoGo task [12] and Psychomotor Vigi-
lance Task (PVT) [6]. These psychological tests can quan-
titatively measure human performance index as either suc-
cess ratio of Go and NoGo responses or average response
speed against visual stimulus. Nevertheless, they do not suit
continuousmeasurement of cognitive performance since they

1https://www.who.int/mental_health/in_the_workplace/en/
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Data collection on a smartphone
(I) sensor reading  (II) usage event (III) Go-NoGo task

Feature extraction
(I) behavioral feature  (II) contextual feature  (III) behavioral similarity

Feature formatting
(I) normalize features (II) replace missing value

Building inference model
train a classifier for recognizing high/low of cognitive performance

Automated inference
smartphone can automatically estimate owner’s cognitive performance 

through usage

Figure 1: Overview of the proposed method.

involves a few minutes. While there have been bountiful
studies aiming at automated estimation of human internal
context related to health (e.g. stress [13], depression [3], anx-
iety [7], etc.) by using smartphone, the estimation of human
cognitive performance is still under explored, and to date,
only a few studies have been reported to our knowledge
[2, 11]. Therefore, it is not well studied what features are ef-
fective to estimate human cognitive performance regardless
of plenty of sensing modalities installed in a smartphone.

In this study, it was hypothesized that the combination
of multiple sensing modalities in a smartphone can sense
changes of user behavior and smartphone usage, allowing
for differentiating the level of human cognitive performance.
To validate that, a feasible experiment was firstly designed
to collect reliable groundtruth of cognitive performance in
the real environment. Then, large-scale dataset composed of
multimodal information and ground truth of performance
has been collected through 34 participants.

This paper proposes a method of estimating human cog-
nitive performance using a smartphone as illustrated by Fig-
ure 1. It illustrates the procedure of the proposed method,
where the collected information on smartphone is trans-
lated into behavioral and contextual features related to one’s
cognitive performance, and then formatted in order to build
inferencemodel. Consequently, over 750 days ofmultimodal
sensor logs and cognitive tests were collected, and then the
inference model was built for automated inference of cogni-
tive performance. The key idea of the method is to combine
both of behavioral feature (e.g, physical movement of body

and smartphone, spatial movement of user, usage of smart-
phone) and contextual feature (e.g. ambient environment,
state of smartphone) to continuously track the situation fac-
ing the user and his/her behavior.
Through validation across 34 subjects, this study revealed

real-behavioral features (i.e. features characterized by iner-
tial sensors) could represent the owner’s cognitive perfor-
mance better than contextual features, and demonstrated
that the cognitive performance levels of the subjects could
be estimated with over 70% accuracy, using only inertial
sensors in smartphones. Finally, fusing multimodal features
improved robustness across different users and boosted the
accuracy up to 74%. The primary contributions of this paper
are as follows:

• Designing a feasible experiment to collect cognitive
performance, and collecting large-scale dataset in the
wild environment.

• Proposing behavioral and contextual feature engineer-
ing across plenty of sensor and usage logs in a smart-
phone

• Demonstrating that the proposedmethod showed 74%
accuracy for identifying high and low cognitive per-
formance, and physical movement of a smartphone
and its owner was the dominant feature in recogni-
tion.

2 RELATEDWORKS
Several studies have been conducted to measure cognitive
performance using smartphone logs. Abdullah et al. investi-
gated the relationship between cognitive performance, smart-
phone usage (screen on/off events), sleep, and chronotype
[2]. They built a model to estimate cognitive performance
by leveraging psychomotor vigilance task (PVT) result, and
reported that screen on/off event was an effective feature
of estimating cognitive performance. Similarly, Murnane et
al. presented a correlation between cognitive performance
and the usage of applications related to productivity (e.g. Ev-
ernote, OfficeSuite) [11]. There also have been many stud-
ies on the estimation of human cognitive performance by
leveraging different sensing modalities. Hou et al. used elec-
troencephalogram (EEG) to profile a subject’s stress level
using the combination of emotion and workload [9]. Ab-
delrahman et al. leveraged thermography to sense human
forehead and nose temperatures since the balance of them
represented subjective cognitive load [1]. However, the use
of dedicated sensing modalities may hinder the scalability
of their solution.

In contrast, themethod proposed in this paper fusesmany
types of smartphone logs and explores the relationship be-
tween sensingmodalities and human cognitive performance.
It also employs Go-NoGo task result as the groundtruth of
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green character :       Go

red character     :  NoGo

Figure 2: Go-NoGo task application; users respond by tap-
ping the screen for “go” stimulus and suppressing taps for
“nogo” stimulus.

cognitive performance rather than PVT result, leading to
building inference model to suit the situation that not only
task execution but also task inhibition is important such as
office work.

3 DATA COLLECTION
This section describes the method of dataset collection to
verify the following hypothesis: the high/low performance
of human cognitive performance affects human-smartphone
interaction, finally showing different patterns across a vari-
ety of sensor types. An Android application was developed
for collecting essential sensor logs and ground truth of hu-
man cognitive performance.

Design of Experiment
This study aims at assessing performance in workplace for
screening mental health of workers. In pursuit of this goal,
Go-NoGo task, a psychological test to measure execution
and inhibition function, is employed to quantify working
performance rather than PVT since execution speed and
inhibition functions are equally important for dealing task
precisely and switching task appropriately. Although Go-
NoGo task requires a few minutes to be finished, it is de-
sired to complete this task asmuch as possible for accurately
track the fluctuation of performance in a day. To balance this
trade-off, the participants were asked to complete Go-NoGo
task three times a day in (1) morning (9:30 to 10:30), (2) noon
(12:00 to 13:00), and (3) evening (16:00 to 17:00). These dura-
tions were selected to capture cognitive performance upon
(1) the start of work , (2) during break, and (3) the end of
work.

Table 1: Collected usage event logs.

log type frequency
power connection, screen on/off, ear-
bud connection, application launch &
quit

event-driven

Table 2: Collected sensor readings and contexts.

log type frequency
acceleration, gyroscope, slope of
smartphone, acceleration without
gravity

1Hz

pressure, illuminance, battery level,
connected & visible Wi-Fi access
points, google activity recognition re-
sult, GPS location

every 5 minutes

storage level, day of week, weekday
and holiday

23:00 everyday

Data Collection Application
Figure 2 depicts the application for data collection. It con-
sists of (1) an on-screen Go-NoGo task application and (2)
a data-logging function always running in the background.
The Go-NoGo task is widely used to gauge human cogni-
tive performance in terms of execution and motor inhibi-
tion [12]. The Go-NoGo task application takes about one
minute and randomly shows one of the eight designated
characters 72 times. Users were instructed to respond (i.e.
tap the screen) to six of the characters (Go-stimuli) and ig-
nore two of them (NoGo-stimuli). They were also required
to respond to the Go-stimuli as fast as possible. The char-
acters for Go and NoGo stimulus are randomly chosen for
individuals in order to remove the effect of characters them-
selves. The application collected the success ratio of Go and
NoGo responses, as well as the average response time for
Go-stimulus. It is noted that the average response time de-
viated significantly among the subjects, and thus the shown
time of each character was calibrated to get an approxi-
mately 90% success ratio for each subject.

Additionally, the application always collects usage event
logs andmultiple sensor readingswith different frequencies,
as shown in Tables 1 and 2. The information was aggregated
by windows with different time scales and used for cogni-
tive performance estimation. The participants agreed to the
collection of this information2.

2This study was approved by the ethics committee of the Graduate School
of Medicine, part of the Faculty of Medicine at the University of Tokyo.
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Data Collection Scenario
A total of 39 healthy employees from the R&D division of
a company were recruited. There were 34 males and 5 fe-
males, aged from their 20s to 50s3. They installed the data
collection application to their own smartphones and col-
lected data from November 13th, 2017 to January 31st, 2018.
Finally, the 1906 (Mean = 52.9, S.D. = 29.5) surveys of the
Go-NoGo task were collected. The summary of the dataset
is as follows. The dataset included 779 days, which com-
pleted both of the sensor logs and at least one Go-NoGo
task result. The 779 days consisted of 649 weekdays and 130
holidays. Unfortunately, the sensor readings were found to
not be properly stored in some devices for 5 of the 39 par-
ticipants. Hence, the Go-NoGo task results were analyzed
through 39 participants, while the evaluation of cognitive
performance estimation was conducted through 34 partici-
pants.

It should be noted that the participants installed the appli-
cation to their smartphones for work rather than personal.
That is, the dataset could easily track user activities during
work days but had the potential for failure on days off. The
dataset was also incomplete for some participants due to
limited permission for the GPS sensor and application logs.
Specifically, 11% of the GPS and 17% of the application usage
logs could not be retrieved. Missing value regarding these
sensing modalities is compensated during a feature format-
ting procedure as described later.

4 DEFINITION OF COGNITIVE PERFORMANCE
A total of 1906 instances of Go-NoGo task results were col-
lected and analyzed from the following perspectives. In Go-
NoGo task, execution function can be measured through Go
response, meanwhile inhibition function can be measured
through NoGo response. Hirose et al. proposes efficiency in-
dex as below.

e f f iciency = y − f (x) (1)
Here, efficiency is derived by subtracting average NoGo suc-
cess ratio (f (x)) obtained by giving actual reaction speed x
to regression line f () presented in Figure 3(a) from actu-
ally obtained NoGo success ratio y. Namely, efficiency rep-
resent the difference in the inhibition performance (accu-
racy of NoGo response) against an ordinary level under the
same level of execution performance (i.e. response speed)
[8]. This metric is employed to represent our assumption:
both of response speed and accuracy are important for deal-
ing task precisely and switching task appropriately in work-
place. This is why we employ efficiency as practical cogni-
tive performance in workplace. We expect that long-term
measurement of efficiency would reflect the change of cog-
nitive load and/or mental health of workers.
3participants detail: 27 in 20s, 9 in 30s, 1 in 40s, and 2 in 50s.
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(b) Distribution of efficiency index.

Figure 3: Summary of Go-NoGo task with user highlights.

Figure 3(b) depicts the distribution of calculated efficiency
values across 1906 instances of Go-NoGo task. As described
in the previous section, this study aims at day-by-day as-
sessment of cognitive performance level in order to assess
long-term effect of work upon one’s mental health. There-
fore, the collected groundtruth (i.e. efficiency) in the morn-
ing, noon, and eveningwere averaged as representative ground
truth of daily performance. However, performance of execu-
tion function (average response time) and inhibition func-
tion (NoGo success rate) was widely distributed among sub-
jects as shown in Figure 3(a). Accordingly, efficiency values
was normalized using z-score within a subject, and then the
class “high performance” was defined by z-score > 0, where
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Table 3: Features regarding interaction extracted fromusage
event.

log type extracted feature
charge event, earbud
connection

count, ratio of connection

screen on/off avg∗, S.D.∗, max, min of on-duration,
count of on & off

application usage count, ratio of app launch, average,
total of use duration, count, dura-
tion of usage sessions, average num-
ber of used applications & application
switching in sessions

∗Note: avg, S.D. indicate average and standard deviation, respectively.

the alternative was “low performance”. This binary trans-
formation is based on assumption that behavioral charac-
teristics when high or low efficiency within the person are
common to different person, even if the value of efficiency
index can locate in different range depending on the per-
son. This allows comparing the relationship between smart-
phone logs and efficiency index among different subjects.
Consequently, the number of high and low labels of effi-
ciency in the collected datasetwere 444 (57.0%) and 335 (43.0%),
respectively. Thereafter, this label was employed as ground
truth in terms of cognitive performance for supervised learn-
ing.

5 PROPOSED METHOD
Overview
Figure 1 shows that the method is comprised of the fol-
lowing five consecutive tasks: (1) essential data collection
through Android application (described in the previous sec-
tion), (2) translation of raw sensor readings to behavioral
and contextual features, and behavioral similarity, (3) for-
matting feature values to successfully train amachine learn-
ing model, (4) training and optimization of the model to in-
fer user cognitive performance, and (5) automated estima-
tion using a model built by supervised learning.

Design of Features
First, behavioral and contextual featureswere extracted from
raw sensor values using timewindows of 1-, 6- and 24- hour.
Using different resolution ofwindow ensures to observemacro-
and micro- scale activities of user. The statistical values ex-
tracted for each sensor type are summarized in Tables 3, 4,
and 5, and described below.

Table 4: Features extracted from smartphone sensor read-
ings (i.e. inertial sensors, context information, location).

log type extracted feature
acceleration, gy-
roscope, slope

avg, S.D., max, min, diff∗ for each axis,
correlation coefficient for each pair of
3 axes

pressure, illumi-
nance, battery
level

avg, S.D., max, min, diff

google activity
recognition

count, ratio for each activities (7
types)

Wi-Fi ratio of Wi-Fi on & connection, count
to the mostly connected AP & found
APs

GPS location max distance from home, distance,
max radius of daily trace, max, min,
diff of latitude, longitude and alti-
tude, count of places visited

storage level raw value
day of week,
weekday and
holiday

one-hot value

∗Note: diff indicates difference between max and min.

Feature of interaction events
Human-smartphone interaction events were tracked by ear-
bud and power connection, screen-on, and application us-
age logs. Using these event logs representing active usage
of smartphone, features regarding interaction shown in Ta-
ble 3 were extracted as below. Power connection and earbud
connection events were captured as the timings of connec-
tion and disconnection. In addition to counting up the num-
ber of connection events, ratio was calculated as the ratio of
connection duration against total duration. User interaction
events were tracked by screen-on and application logs. The
number and duration of screen on event were aggregated
as count, avg. S.D., max and min. An application event con-
sisted of a timestamp and application package name. It was
first translated into a pair consisting of a timestamp and ap-
plication category (published on the Google Play Store) due
to the huge number of unique package names. It should be
noted that some applications are not publicly available (e.g.
built-in applications by smartphone makers and telecom-
munications carriers). Accordingly, category labelswereman-
ually given according to function (e.g. OS setting, OS home
screen). For each category, the number of launch, ratio across
a series of hourly launch, and launch duration were calcu-
lated. The application usage was also integrated by session
unit, which represents a series of application usage from
screen on to off.
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Table 5: Features of activity similarity.

log type extracted feature
GPS location Jaccard, Dice Index of visiting points com-

pared to 1 day/week ago
screen on Bhattacharyya coefficient of on-

distribution, difference of total on-count &
on-duration against his/her average usage
& 1d/1w ago

application Bhattacharyya coefficient, difference of to-
tal count & duration for each application
against his/her average usage & 1d/1w ago

Feature of Sensor Logs of Smartphone
Table 4 represents features extracted from sensor readings
equipped with a smartphone. Each feature is derived by the
following procedures. For sequential values, such as inertial
sensor (i.e. acceleration, gyration and slope) readings, statis-
tical values were calculated as follows: average, standard de-
viation, max value, min value, and difference between max
and min (as denoted by avg, S.D., max, min, diff ). The corre-
lation coefficient was also calculated for each pair of sensor
axes. For the measured scalar values (e.g. pressure, ambient
illuminance, and battery level), average, standard deviation,
max, min, and difference were calculated.

The other sensor features were derived as following: the
results of the Google activity recognition package were ag-
gregated into two values (count and ratio): count naturally
counts up the number of detected activities for each type,
and ratio translates count values into the probability of oc-
currence among all activity classes. TheWi-Fi log consists of
connection and observation logs. The ratio of Wi-Fi stand-
by and connectionwas calculated, and the number ofmostly
connected Wi-Fi access point and found access points was
aggregated. GPS trace was used for tracking spatial and se-
mantic locations. First, the coordinates of their homes and
lists of stay points were inferred. Then the total and max-
imum distances from the home were calculated from daily
trace. The stay points were also counted to track the sub-
jects’ semantic locations [3]. Storage level was recorded to
capture the change in the remaining amount due to user
activity on smartphone. Date and work information were
added to represent users’ work styles.

Feature of Behavioral Similarity
The regularity of human behavior is expected to depend on
the one’s mental state. To capture the periodic signal and
changes in the behavior patterns of subjects, behavioral sim-
ilarity features were designed using the semantic location
and interaction of smartphones as summarized in Table 5.
The spatial location captured by GPS was first translated

into a set of semantic places. Then, Jaccard and Dice indices
were calculated to measure similarities of mobility patterns.
For the patterns of screen activation and application usage,
Bhattacharyya coefficient was calculated for their probabil-
ity distribution of screen on event or application launch over
every hour.

Feature Formatting
To ensure the effective training of classifier, it is essential to
understand the difference among users and deal with miss-
ing feature values. First, each feature value was scaled to a
standard distribution with zero mean and unit variance to
fairly compare feature values across different types of value
range. Thereafter, feature compensation was applied for in-
complete data, by using the average data available from ei-
ther the subject or the other subjects.

Detection of Cognitive Performance
A classifier was built to recognize the two states of user cog-
nitive performance (high or low) by leveraging a variety of
feature values representing user behavior on a given day.
TheXGBoost [5]model, which presents state-of-the-art per-
formance on classification task, ranking task, etc., was em-
ployed. Due to incompletely balanced ground truth labels,
a SMOTE [4] oversampling algorithm was applied to avoid
overfitting caused by a larger weight of the major class. The
balanced feature values and ground truth labels are fed to
XGBoost model to be tuned.

Optimization of Features for Inference
High dimensional features often cause over-fitting and in-
crease computational costs. To reduce the dimension of the
feature space, feature importance values derived by the XG-
Boost model were referred to, and features with relatively
lower importance were filtered out. Finally, approximately
5% of all feature values were left.

6 PERFORMANCE EVALUATION
This section elaborates upon the evaluation results of the
proposed method based on the following goals: to clarify
the contributions of each log type available on smartphone
for detecting cognitive performance, and confirm the over-
all capability of the proposed method to estimate cognitive
performance by combining multimodal features.

Evaluation Setting
Tomeasure the capability of system generalization for a new
subject, a leave-one-subject-out (LOSO) cross-validationmethod
was used over 34 subjects. The participant’s own dataset
(i.e. test dataset) was used for formatting his/her features.
However, the test dataset was never leaked to training and
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Table 6: Result of performance recognition with different
feature types.

used feature type performance metrics
Acc. Spe. Sen. Pre. AUC

baseline 51.0% 57.0% 43.0% 43.0% N/A
(1) inertial sensor 72.0% 76.2% 66.3% 68.3% 0.781
(2) context information 62.7% 63.4% 62.7% 56.0% 0.670
(3) location 59.4% 56.0% 63.9% 52.4% 0.641
(4) interaction information 61.7% 64.0% 58.8% 55.3% 0.664
(5) behavioral similarity 59.4% 60.2% 58.1% 52.6% 0.610
(6) calendar 50.5% 48.3% 53.9% 43.8% 0.508
using all features 74.1% 77.1% 70.7% 70.1% 0.809

feature selection procedure. The metrics of system perfor-
mance and abbreviationswere as follows. (1)Accuracy (Acc.):
the overall success rate of high and low classification. (2)
Specificity (Spe.): the coverage of high state recognition. (3)
Sensitivity (Sen.): the coverage of low state recognition. (4)
Precision (Pre.): the ratio of correctly retrieved low state out
of all detections. (5) ROC-AUC (AUC): the area under ROC-
curve. A baseline estimationmethodwas introduced for com-
parison; it randomly estimates according to the probability
of high and low labels.

Relationship between Feature and Performance
Table 6 depicts the performance variation with different fea-
ture types. Each column represents performance when us-
ing particular feature for estimation. The labels (1) inertial
sensor, (2) context information, (3) location, (4) inter-
action information, (5) behavioral similarity, and (6)
calendar mean the performance when using features re-
garding (1) accelerometer, gyroscope, and orientation sen-
sor, (2) pressure and illuminance sensors, battery and Wi-
Fi states, and google activity recognition, (3) location given
by GPS, (4) events of power connection, earbud connection,
screen on/off, and application usage, (5) behavioral similar-
ity features in Table 5, and (6) calendar information, respec-
tively. It can be seen that using calendar information does
not improve detection performance compared to baseline,
highlighting that cognitive performance is not predictable
by periodical rules. These results indicate that using inertial
sensors contributes mainly to allowing the classifier to de-
tect whether the cognitive performance is high or low. Note
that behavioral similarity features are incomplete due to the
lack of samples, since a comparison between logs and the
logs in up to one week ago is required. Accordingly, feature
values are not complete in the first week of experiment.
Comparing the results, it was found that the system could

recognize higher/lower states of efficiency index with over
70% (approximately 21% increase against baseline) accuracy

time

frequency

(1) inertial sensor

(2) context information

(3) location

(4) interaction information

Figure 4: Distribution of the number of selected features for
feature types and time periods.

using only inertial sensors. In the other metrics, the pro-
posed method could improve performance compared to the
baseline performance. It was also confirmed that user-smartphone
interaction events, such as application usage frequency and
screen-on duration, ensured the recognition of user cog-
nitive performance, similar to previous studies [2]. How-
ever, accuracy was limited to approximately 60% when us-
ing only features regarding interaction; this suggests user-
smartphone interaction log is not fully capable to infer users’
cognitive performance, since it depends on the frequency
of user interaction. It was also confirmed in another eval-
uation that XGBoost algorithm had showed better perfor-
mance on accuracy (up to 72.0%) than Random Forest algo-
rithm (64.3%).
Figure 4 depicts the distribution of the number of selected

important features. Vertical axismeans feature type and hor-
izontal axis means time period by an hour as well as the
color represents freqency of selection. Note that features of
calendar and behavioral similarity are omitted since they
are calculated by day unit. The figure briefly represents tem-
poral contribution of each feature type for cognitive perfor-
mance estimation. It is found here that all the feature types
contribute from 8:00 to 23:59 and inertial sensor features are
the most important among them. It is also notable that in-
ertial sensor features respond even in approximate bed time
(i.e. 3:00 - 6:59). This indicates that owner’s behavioral fea-
ture during bed time has potential to represent the duration
and quality of sleep, and further may be leveraged to esti-
mate his/her cognitive performance. This finding is partially
related to a previous study on the relationship between sleep
duration and quality, and cognitive performance [10].

Combined Performance
Table 6 also presents the inference performance when us-
ing combination of all the available features. It is found that
fusing multiple sensing modalities can improve accuracy by
2.1% compared to using only inertial sensors. This indicates
that the performance of human cognitive function can be
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Table 7: Statistics of Acc. for 34 participants.

used feature statistics of Acc.
type avg.∗ S.D.∗ max min

inertial sensor 72.0% 13.2% 100% 25.0%
all features 75.1% 9.7% 100% 56.0%

largely found with the motion behaviors captured by iner-
tial sensors, and other sensing modalities can improve ro-
bustness by considering ambient environment and interac-
tive behaviors. Indeed, in the evaluation for each partici-
pant unit, average, standard deviation, max, min of accuracy
were summarized as Table 7. This result demonstrated the
worst case of performance of the proposed method showed
poorer than baseline method in Table 6 when using only in-
ertial sensor features for a particular subject. In contrast, it
also indicates that the combination of various features avail-
able on smartphone can consistently estimate a user’s cog-
nitive performance, where theminimumperformance is still
higher than baseline method as well as the standard devia-
tion is much smaller. This highlights the advantage of using
multimodal information to improve robustness of inference
model.

Consequently, the proposedmethod could distinguish high
or low state of cognitive performance calculated as efficiency
with up to 74% accuracy. However, the performance evo-
lution appears limited since the estimation model is built
by LOSO cross validation and not optimized for individu-
als. The performance is expected to be improved by train-
ing the inference model with further collected dataset in the
consecutive study.

7 CONCLUSION
This paper presented a method to identify the level of hu-
man cognitive performance by leveragingmultimodal infor-
mation in a smartphone. Behavioral and contextual features
were designed over 15 types of sensor logs, and the method
was examined through 779 traces of 34 participants. The re-
sults demonstrated that the method could classify high and
low states of cognitive function with over 70% accuracy us-
ing inertial sensor features, and consistently estimate cog-
nitive performance across 34 subjects by combining sens-
ing modalities in a smartphone. This study is currently lim-
ited in terms of dataset diversity. The forthcoming study
aims at validating generalizability of the proposed method
across a variety of subject. We also aim at updating our al-
gorithm by employing deep learning and better feature se-
lection method.
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