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ABSTRACT
The advances in mobile and wearable sensing have led to a myriad of approaches for stress detection
in both laboratory and free-living settings. Most of these methods, however, rely on the usage of some
combination of physiological signals measured by the sensors to detect stress. While these solutions
work great in a lab or a controlled environment, the performance in free-living situations leaves much
to be desired. In this work, we explore the role of context of the user in free-living conditions, and how
that affects users’ perceived stress levels. To this end, we conducted an ’in-the-wild’ study with 23
participants, where we collected physiological data from the users, along with ’high-level’ contextual
labels, and perceived stress levels. Our analysis shows that context plays a significant role in the users’
perceived stress levels, and when used in conjunction with physiological signals leads to much higher
stress detection results, as compared to relying on just physiological data.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile computing; • Applied computing
→ Health care information systems; Health informatics;
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INTRODUCTION
Stress can be defined as a physiological response to external stimuli – physical, mental, social or
emotional. While short periods of stress can actuate positive changes in an individual’s life, continuous
and sustained exposure to stress can lead to chronic health outcomes [7, 10]. Hence, timely detection
of an individual’s stress can help them effectively manage their stress and in turn improve their
physical and mental health.

Over the years there have been several works using physiological sensors towards stress detection,
in controlled, semi-controlled and uncontrolled (or natural) conditions. The most prominent of which
is cStress, where the authors use a combination of Electrocardiograph (ECG) and Respiration (RIP)
sensors to measure binary stress in the lab and the field [6] settings. The cStress system performs well
in the lab setting with high recall and an F1 score of 0.81, however, in the field, the performance drops
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to a median F1 score of 0.71. Building on the cStress model, Sarkar et al. conducted an independent
field study with 38 participants [12], and were able to detect stress with an F1 score of 0.72.
Gjoreski et al. used the Empatica E3 wrist device [2] to collect Blood Volume Pulse (BVP), Skin

Temperature (ST), Heart Rate Variability (HRV), Galvanic Skin Response (GSR), and physical activity
level using the accelerometer [3]. Similar to cStress, the authors conducted a lab and field study and
showed that they could detect binary stress with an F1 score of 0.80 and 0.63 in the lab and field
settings respectively.

Egilmez et al. show that in a lab setting, they could achieve F1 scores of 0.88 using just wrist based
heart-rate and GSR sensors [1]. Sano et al. conducted a field study where they used wrist-worn
sensors to collect accelerometer and GSR data, along with smartphone usage data (including calls,
SMS, location and screen on/off) from 18 participants [11]. The authors report results for binary
classification of stress with an accuracy of 75%.
A trend observed in all of the above mentioned works is the high stress detection accuracy in a

lab or controlled setting, which doesn’t translate to similar results in the field setting. One key factor
for such a discrepancy is the fact that researchers use models trained in a constrained lab scenario
to detect stress in daily living conditions, which has several unknowns, variables and confounding
factors. Further, the current usage of just physiological signals assumes that whenever people perceive
stress, it would be reflected in their physiological signals, which is not always true.
We believe that knowledge of the context of an individual would help simplify the task of stress

detection by helping address the points above. Contextual information can help provide some a-priori
knowledge, which can lead to stress detection with an expected knowledge, or detecting in a particular
type of situation, e.g., A stress-detection model trained during mental arithmetic task in the lab might
not be appropriate while the user is driving, but might be more appropriate while the user is working
or studying.
Further, recent developments in context detection has shown much promise in being able to

detect a person’s context or contextual behavior using smartphones and wearables with reasonable
accuracy [13], suggesting that in the future, fine-grained contextual information would be readily
available to incorporate in to different mental and behavioral sensing tasks, including Stress.

To test out our initial hypothesis about the usefulness of context, we conduct an in-the-wild study,
where we collect physiological signals (R-R intervals) from a commercial wearable (Moto 360 [9])
along with self reports for stress, which is on a scale of 0–5. Further, we identified several ‘high-level’
daily activities1, which we also asked the participants to self-report. As this is an exploratory analysis1Since all participants in the study were em-

ployees of a large information technology cor-
poration, the choice of the activities were based
on what a regular employee in a technology
firm experiences. These activities might or
might not be applicable to a different popu-
lation group.

to observe the effect of context in stress detection, we decided to obtain the context (i.e., the high-level
activity) labels as a self-report. Based on the evaluations of this study, we hope to employ ‘passive’
context detection in future.
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Our analysis shows that contextual features have a significant effect on the users’ perceived stress
levels, and when used in conjunction with physiological features lead to better prediction results, in
both, binary classification (F1 score of 0.769), and regression based detection models (r = 0.72), as
compared to using just physiological features or just contextual features.

DATA COLLECTION
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Figure 1: The flow of a self-report prompt as presented
to the user. During the study, the activity prompt al-
ways succeeded the stress prompt, to make sure that
the participants’ perception of stress was not affected
by the activity they were doing.

We conducted an in-the-wild study, with n = 30 participants (11 females, 19 males), all over 25 years
of age (25-34 years:15; 35-44 years: 8; 45-54 years: 3; over 55 years: 2). All recruited participants were
employees of a large information technology corporation. At the start of the study, the participants
completed the consent form, along with a brief demographic survey. After signing the consent form,
the participants were asked to wear a commercially available smartwatch (Moto 360 [9]) for at least 3
days. The watch was pre-installed with an app to passively collect continuous HRV and accelerometer
data from onboard sensors (while the Moto 360 does not have an HRV sensor, we use the approach
described by Hao et al. to extract R-R intervals from the onboard Photoplethysmography (PPG)
sensor [5]). The app also prompted the participants with self-reports about their in-situ perceived
stress levels and context information. Each self-report prompt consisted of two questions; the first
question asked the participants to rate their stress level on a scale of 0–5 (0 being extremely relaxed
and 5 being extremely stressed), the second question asked about the associated context, i.e., the
type of activity they were engaged in during that time. The participants had to choose from 10
common daily activities – sleep, dine, socialize, meeting, work, rest, drive, housework, exercise, and
entertainment. During the study, the stress prompt always preceded the activity prompt, to make
sure that the participants’ perception of stress was not affected by the activity they were doing.
During the initial visit, the participants were trained on how to use the app, respond to prompts,

and use the stress scale (0–5) to report their stress levels.. The participants were instructed to wear the
device for the whole day, except while bathing, swimming and sleeping. The flow of the self-report
prompts as presented to the participants, is shown in Figure 1

Net Data Collected
While we collected data from 30 participants, we had to filter out some users due to data qual-
ity/quantity issues. Two users seemed to have data quality issues, where one user marked all ’stress’
self-reports as 0, while another just marked 0 for all but one ’stress’ self-report. Further, we had to
remove 5 additional participants from the analyses due to low response count to self-reports, resulting
in a total of 23 participants that were finally included in the analyses. Further, since we had asked the
participants to not wear the watch while sleeping, we removed the self-reports where the reported
activity was ’sleeping’ (count = 12), and self-reports where the participants responded between 12
a.m. and 6 a.m. (count = 14).
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Thus, we ended up with a total of 112 days worth of data from 23 participants (mean = 4.86), and a
total of 1176 self-reports containing both stress and activity labels (mean = 51.13).

METHOD
In this work, we evaluate the effect of contextual features on the users’ perceived stress level. We
consider three contextual features – (a) the self-reported activity, (b) the time of the day, and (c) the
day of the week. The self-reported activity is considered as a categorical value, the time of the day is
broken down into three categories, (1) 6 a.m. – 12 p.m., (2) 12 p.m. – 6 p.m., and (3) 6 p.m. – 12 a.m.
and the day of the week is also represented as a categorical value ranging from (0) to (6), representing
Monday to Sunday.

Further, we use the contextual features and the R-R interval features, individually and in combina-
tion, to train machine learning models for stress detection. We report results for both (a) classification
between binary stress, and (b) regression for a continuous stress scale of 0–5.
For the binary classification task, we calculated the median of the self-reported stress levels for

each participant. If the self-reported score for a participant was lower than their median score, we
labeled it as ‘0’, i.e., not stressed, else we labeled it as ‘1’, i.e., stressed.
For using physiological data for stress detection, we performed a thorough data-cleaning and

normalization pipeline (as recommended by Mishra et al. for commodity devices [8]), to remove any
participant specific effects on the data. Next, we compute R-R interval features for every self-report.
Assuming a self-report was answered at time t . We look at a window of time ∆t before that self-
report, and divide it into 60-second intervals. We compute several time-domain features, as used by
Mishra et al. [8] – mean, median, standard deviation, max, min, 80th percentile, 20th percentile and
root mean square of successive differences (RMSSD), for each 60-second interval in the [t −∆t , t] time
window, and label each instance with the self-reported stress score or the binarized stress score at time
t . In this work, we choose ∆t = 10 minutes, which is in-line with previous work by Gjoreski et al. [4].

EVALUATION
We start our evaluations by exploring the effect of contextual features on the perceived stress levels.
To this end, we conduct three separate one-way ANOVA tests with the perceived stress score as
the dependent variable and the reported activity, time of day, and day of the week as independent
categorical values respectively. The results of the first analysis (i.e., the effect of activity on the
perceived stress levels) show a significant effect, with F (8, 1167) = 24.48,p < 0.001. In order to find
which activities affect participants’ perceived stress, we perform a Tukey post-hoc test (by setting
α = 0.05). As shown in Figure 2a, the test revealed that activities like Meeting, Work, Driving, and
Housework result in significantly higher perceived stress levels.
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(a) Effect of activity context on perceived stress.
Blue markers represent significantly higher
stress levels, F (8, 1167) = 24.48,p < 0.001.
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(b) Effect of time of day on perceived stress. Blue
marker represents significantly lower stress lev-
els, F (2, 1173) = 31.65,p < 0.001.
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(c) Effect of day of the week on perceived stress.
No statistical significance is observed, F (6, 1169) =
1.82,p = 0.09.

Figure 2: Mean and 95% CI, showing the effect of different contextual features on the perceived stress levels

The results of the second analysis (i.e., the effect of time of day on perceived stress levels) show
a significant effect, with F (2, 1173) = 31.65,p < 0.001. Next, we perform Tukey post-hoc test (with
α = 0.05) and observe the perceived stress levels between 6 p.m. – 12 a.m. are significantly lower than
the rest of the day, as shown in Figure 2b

Context Physiological
Context &

Physiological
F1 Score 0.613 0.502 0.769
Precision 0.567 0.588 0.765
Recall 0.667 0.438 0.774
False Positive Rate 0.391 0.243 0.189

Table 1: Classification results for binary stress detection,
using just contextual features, just physiological features and
a combination of contextual and physiological features.

Finally, the third analysis (i.e., the effect of day of the week on perceived stress levels) does not
show any significant effect, with F (6, 1169) = 1.82,p = 0.09. The variation of perceived stress levels
based on day of the week is shown in Figure 2c.

Having established that contextual information (activity and time of day) has a significant effect on
the participants’ perceived stress level, we move towards detection of stress. As mentioned previously,
we evaluate stress detection by, first, a binary classification between stressed and not stressed,
and second, regression on a continuous stress scale of 0–5. We use Random Forests for both, the
classification2 and regression evaluations.2In the case of binary classification, the Ran-

dom Forest model outputs the probability of
the instance belonging to the positive class (i.e.,
stressed). If this probability is greater than a
particular threshold (default = 0.5), then that
instance is classified as 1 or true, else it is clas-
sified as 0 or false

We report 10-fold cross-validation results (F1 score, Precision, Recall, False Positive Rate) for a
binary classification of stress in Table 1.

It is interesting to see that just the contextual features result in higher classification performance (F1
score) than using just physiological features. The poor performance of just the physiological features
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is expected since the evaluations are in-the-wild using just the R-R interval signals from a commercial
smartwatch. We, however, notice that using the combination of Contextual and Physiological features
leads to a major boost in performance – higher F1 score, precision, recall, all with lower false positive
rates.
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(a) The performance achieved by using just the
physiological features, grouped by the differ-
ent activities.
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(b) The performance achieved by using the
combination of contextual and physiological
features, grouped by the different activities.

Figure 3: Performance achieved by Mp and Mc+p
grouped by the different activities.

To further investigate the big performance gap between the classification model using just physio-
logical features (Mp ) and the classification model using combination of contextual and physiological
features (Mc+p ), we look at the performance metrics achieved by both the models, segregating them
by activity, as shown in Figure 3. In Figure 3a, it is interesting to observe thatMp has relatively better
precision in detecting stress during Meeting, Work, and Drive activities, all three of which have been
shown to relate with significantly higher ‘perceived stress’ levels. This suggests that out of all the
instances classified as stressed (in the above mentioned activities), the proportion of instances that
were actually stressed was high. The recall (i.e., the proportion of actual stressed instances that were
classified as stressed), however, is poor across all activities, resulting in low F1 scores. This suggests
that without any knowledge of the context, just the physiological features are able to accurately
detect some of the stress events, but they miss out on many others. This is because the models are
trying to detect ‘perceived stress’, which might not always translate to a physiological response.

When we add the contextual features, however, the model (Mc+p ) gets some additional knowledge
on how to better detect the ‘perceived stress’ levels. As we can observe in Figure 3b, while the precision
is high across all activities, the recall in certain activities, e.g., Dine, Rest, and Entertainment, is low,
along with extremely low False Positive Rate (< 0.05). It is interesting to note that the all three
activities (Dine, Rest, and Entertainment) have been associated with lower ‘perceived stress’ levels,
based on earlier evaluations. One possible reason for such a trend could be that based on the contextual
and physiological features the model outputs a low probability of an instance (in the above-mentioned
activities) being stressed, and with our default classification threshold (Td ) of 0.5, the model fails to
classify several stressful instances. We believe that if we tune or optimize the classification threshold
for each context, we would be able to achieve better results during those activities. It is important
to note that we are not discussing about building separate models for each activity, but in the same
Mc+p model use different thresholds based on the activity of the user for an instance to be classified
as stress.

We optimize for F1 score (to have a balance between precision and recall, as F1 score is the harmonic
average between recall and precision of inferring stress arousal). To this end, we plot the variation of
F1 scores across different activities for different threshold, as shown in Figure 4. It is clearly evident
from the plot that a default threshold of 0.5 is not ideal. Further, it shows that our previous reasoning
for lower performance in some activities (Dine, Rest, and Entertainment), was indeed true. For these
three activities, a custom threshold of 0.36, 0.40 and 0.26 results in an increased F1 score of 0.641, 0.637,
and 0.674, respectively. A detailed representation of the optimal threshold for individual activities,
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with the updated F1 scores in contrast to the previous F1 scores is shown in Table 2. We observe that
a minor change in the classification process (of adjusting the threshold according to the activity)
would in higher F1 in each activity. While we did not build a new model incorporating individual
threshold based classifications, we expect it to achieve better results (F1 score, precision, and recall)
as compared to the results obtained by modelMc+p (Table 1). We leave the building and evaluation of
the new model for future work. In the future, we also plan on testing different classifiers for different
activities or for different times of day, etc.
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Figure 4: F1 score for individual activities for different
classification thresholds (T ).

Custom
Threshold

Updated
F1

Previous
F1

Dine 0.36 0.641 0.563
Socialize 0.42 0.718 0.680
Meeting 0.43 0.839 0.835
Work 0.50 0.786 0.786
Rest 0.40 0.637 0.591
Drive 0.56 0.900 0.890
Housework 0.34 0.747 0.705
Exercise 0.36 0.748 0.729
Entertainment 0.26 0.674 0.584

Table 2: Representation of the optimal thresholds for each
activity and the resulting improved F1 score in contrast to the
previous F1 score when the model had a default threshold
= 0.5

Having done some exploratory analysis on how combining contextual features with physiological
features affect binary classification, we move further to a regression based detection of stress. In this
case instead of a binary classification between stressed and not stressed, we use the perceived stress
scores reported by the participants directly as the outcome class, and use Random Forest regression
for detection on a scale of [0,5]. The results are similar to that of binary classification, where the
combination of contextual and physiological features result in the highest correlation coefficient of
r = 0.72,p < 0.001. We show the comparison between correlation coefficients and Mean Absolute
Error (MAE) for the different models in Table 3. We compare these results with that of a baseline
classifier – which predicts the median stress score for each instance, regardless of the features.

DISCUSSION AND CONCLUSION
All our evaluations clearly highlight the importance of contextual information in stress detection. Our
results show that using a combination of contextual and physiological features always leads to better
detection results, in both, binary classification of stress (Table 1 and regression based detection 3,
as compared to using just physiological signals or just contextual features. While results between
different studies cannot be compared directly, the prediction results we obtain (by incorporating
contextual features) are higher than the results obtained by other in-the-wild studies. Further, we hope
that more sophisticated modeling techniques, or optimization of the current models can definitely
help boost the results even further. We discuss one such case of optimization, where we show that
different classification thresholds (based on the users’ activity) could lead to better binary prediction
scores. In the future, we intend to do more evaluations and optimization, to be able to better the
current results and attempt to come closer to the in-lab results by other researchers.
It is also interesting to note that R-R interval was the only physiological signal used. We hope

that adding another source of physiological signal, e.g., RIP, or GSR, as used in previous works,
would lead to an improvement in performance [1, 3, 6]. Finally, our current evaluations have given us
enough confidence to accept that context is indeed an important factor, and in the future, we intend
on conducting studies where along with physiological signals, the contextual information will be
collected passively.
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Correlation Coefficient Mean Absolute Error

Physiological
Features

r = 0.40,p < 0.001 0.76

Contextual
Features

r = 0.37,p < 0.001 0.78

Contextual +
Physiological
Features

r = 0.72, p < 0.001 0.53

Baseline
Classifier

r = −0.01,p = 0.09 0.89

Table 3: Results from the regression basedmodel for different
sets of features.
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