
Supporting Smartphone-based

Behavioral Activation: A Simulation

Study

Jakob E. Bardram,

Darius A. Rohani

Copenhagen Center for Health Technology

Technical University of Denmark

Kgs. Lyngby DK-2800, Denmark

{jakba,daroh}@dtu.dk

Nanna Tuxen,

Maria Faurholt-Jepsen,

Lars V. Kessing

Psychiatric Center Copenhagen

University of Copenhagen

{nanna.tuxen,maria.faurholtjepsen,lars.vedel.

kessing}@regionh.dk

ABSTRACT

Behavioral activation has shown to be a simple yet effective therapy for depressive patients. The

method relies on extensive collection of patient reported activity data on an hourly basis. We are

currently in the process of designing a smartphone-based behavioral activation system for depressive

disorders. However, it is an open question to what degree patients would use this approach given the

high demand for user input. In order to investigate this question, we collected paper-based behavioral

activation forms from 5 patients, covering in total 18 weeks, 115 days, and 1,614 hours of self-reported

activity data. In this paper we present an analysis of this data and discuss the implications for the

design of a smartphone-based system for behavioral activation.
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INTRODUCTION

Of all registered mental diseases in Europe, unipolar disorder (depression) has the highest prevalence

of 6.9% [13]. This large patient group imposes a significant societal burden with re-admissions, lost

productivity, and mortality [11]. The current treatment consists of pharmacotherapy, psychotherapy,

or a combination [6]. The most popular method of psychotherapy for depression and many other

mental disorders is cognitive behavioral therapy (CBT) [2] due to its short-term consultations and

problem solving technique. However, in a large 16-week randomized trail [1] it was found that

behavioral activation (BA) alone was as effective as pharmacotherapy and both treatments were

significant better than cognitive therapy (CT). The treatment plan for BA starts with the patient

reporting his/her activity every hour for several weeks [4]. This is done on a print-out of a week

schedule typically between 8am and 11pm. The activity is provided with a score on ‘mastery’ (i.e.,
the level of perceived accomplishment) and ‘enjoyment’ (i.e., how pleasant the activity was felt).

Together with a therapist, the patient then identifies activities that reinforces depressed and healthy

behavior [4]. This insight is then used to plan activities of the following week.

Figure 1: The overview screen ofMoribus.

Limited clinical personnel together with a growing patient group, have fostered an interest in the

use of smartphones to support BA. Smartphones used in behavioral studies and healthcare have been

exponentially growing due to its passive sensor data and the ability to prompt users in-the-wild. This
yields a powerful combination for studying behavior and for behavioral change interventions [7].

However, in a recent review of 117 CBT and BA apps, Huguet et al. [3], finds that there is a “low level

of adherence to the core ingredients of the CBT/BA models” and concludes that “the utility of these

CBT/BA apps are questionable”.

Wahle et al. [10] have developed the most recent system targeting BA for depression. Passive

sensors monitoring mobility and physical and social activity are guiding a recommender system

to suggest activities. However, this system is based on a pre-made list of activities. This method

creates a non-personalized behavioral change intervention that does not learn from the patient’s own

behavioral traits.

Currently, we are extending this research and are designing a BA system calledMoribus [8]. The aim

is to leverage patient generated activity data to develop an automatic recommender of personalized

https://doi.org/10.1145/3123024.3125617
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activities. In order to do this, we first need to sample activities from the patient and analyze which are

reinforcers of respectively healthy or depressed behavior. Such a system would have the possibility to

improve existing BA methods by assisting inexperienced psychologists to locate possible reinforcers

and to provide the patient with a powerful data-driven psycho-educational insight into their own

behavior.

However, BA activation requires the patient to do detailed self-reporting of daily activities on

a hourly basis. This can be a cumbersome task, whether it is done on paper or on a smartphone.

Therefore, in order to investigate the feasibility of the design of Moribus, we have done a detailed

analysis of a set of paper-based activity forms filled in by 5 patients. This analysis contributes to

several things:

• It provides an analysis of real-world BA self-reporting.

• It provides a validation test of the design ofMoribus – both in terms of the activity categorization

applied and the feasibility of using the smartphone for activity registration.

• It provides insight into how the design of Moribus can be improved.

Even though engagement with paper-based tools does not predict engagement or feasibility of

using technology, this study will still provide insight into the details of how patients fill in BA forms

and help improve on the design of Moribus before further usability testing and field deployment is

undertaken.

MORIBUS

The core design approach of Moribus is to support the BA method by building a patient-generated

database of activities and help the patient to discover reinforcers.Moribus is designed to be used in a

‘blended care intervention’ in which a clinicians motivates a patient to use the app for four weeks,

whereafter the patient and clinician together reviews the progress. If the patients wants, she or he

can continue to use the app.

Figure 2: The calendar screen of Moribus.

Every hour between 8am and 11pm the patient provides information on the current activity and

scores it in terms of ‘mastery’ and ‘enjoyment’. On the basis of Mørch & Rosenberg [5], we developed

six distinct activity categories to cover all types of activities:

Movement – Running, biking, taking a walk, swimming, dancing

Work & education – Updating CV, doing volunteer work, at the office

Sparetime & “hygge” – Reading a book, watching TV, shopping, ‘hygge’
11

“Hygge” is a Danish word gradually making

its way into the English vocabulary [12]. Daily living – Sleeping, getting up, eating, taking a bath, planning

Practical things – Vacuum cleaning, buying groceries, cooking, gardening

Social – Cup of coffee with a friend, cinema with mom, with guests
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Figure 1 shows the main overview of today’s planned activities with a pie chart showing the

distribution amongst activity categories. Figure 2 shows a calendar to be used for weekly planning

(typically on Sundays). By pressing an empty slot, the patient can plan an activity using the screen

shown in Figure 3. The patient selects one of the categories, can choose from a list of standard activities

(by pressing the lightbulb icon) or can enter a text for the activity, which then will be saved as part of

the list for later use.

Every hour – or when a planned activity ends –Moribus notifies the patient to register the activity

using the registration screen (Figure 3). Here the patient enters the details of the activity done,

including score the activity in terms of ‘mastery’ and ‘enjoyment’ on a 1 − 7 scale. At the end of the

day, the patient enters a daily mood score on a −3 to 0 scale (−3 being most depressed).

The application is built on top of SENSUS, an open source system for mobile sensing [14]. The

combined data from the activity sampling, daily mood score, and phone sensor data is synchronized

from the phones storage to an Amazon S3 storage whenever a wifi connection is available.

ACTIVITY TRACKING

Moribus is an example of a system for collecting patient generated data (PGD) on activity. The end

goal is to design a fully automated solution for BA therapy, which helps to restructure the patient’s

activities with recommendations based on own prior activities and activity patterns. However, this

requires the patient to self-report activities on an hourly basis, at least for a training and calibration

period. A core challenge to this approach is the danger of overloading the user with tedious manual

input. In the case of Moribus, prompting patients every hour – particularly patients with a mood

disorder – is putting on a large data entry burden on patients. At the workshops done as part of

designingMoribus, patients argued that only “...if the activity sampling can be done with few taps, it
will be acceptable” (see [8] for details on the design process).

Our current design tries to meet this design goal. In order to test if this is the case, we did a

simulation study of Moribus by collecting paper-based BA charts from 5 patients.

Figure 3: The registration screen of

Moribus.
ANALYSIS OF PAPER-BASED BA FORMS

Methods

We asked a psychologist (NT) to collect as many paper-based BA forms from her patients as possible.

This resulted in a collection of forms from 5 patients, covering in total 18 weeks of self-reported

activity on an hourly basis. Figure 4 shows an example of a filled form using a template with one sheet

per week and slots to fill hourly from 8am to midnight. The instruction on top of the form instructs

the patient to rate each activity / hour with a 1 − 10 score, indicating ‘how well you feel in any given
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Figure 4: A paper-based BA form from a patient reporting one week of activity every hour on each

sheet. In this example, each hours is rated on a general ‘feeling’ score from 1–10.

timeslot’. We call this score for the ‘feeling score’. Each sheet were subject to data extraction and

transcription analyzing the following parameters:

• Total numbers of weeks, days, and hours that the patients did self-reporting.
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Figure 5: Relative distribution of all activities for all patients.

• Completion rate in self-reporting, calculated as how many of the possible days and hours

were actually reported. Full completion was defined as 7 days a week and 16 hours per day

(corresponding to the number of slots on the paper form).

• Each hour of self-reported activity with its feeling score (if available) was tagged with one of

the predefined activity categories used in Moribus.

• If the patient has scored the activity, then feeling scores for each activity was transcribed and

agregate values (mean and standard deviation) was calculated both on a daily, weekly, and

overall scale.

Results

Table 1 shows an overview of the self-reported data from each patient. In total 5 patients reported

18 weeks, 115 days, and 1,614 hours of self-reported activity data. Overall completion rate (show in

parenthesis) is 91% for the number of self-reported days and 88% for hours
2
.

2
We have not been able to calculate completion

rate for the number of weeks since we have no

information on how many weeks/forms each

patient was asked to fill out.

Figure 6 (left) shows the distribution of all activities of all patients (1,614 activities in total) catego-

rized into the sixMoribus categories. Figure 6 (right) shows the distribution of all activities of P1 (182

in total) into the sixMoribus categories. The piechart resembles the visualization used inMoribus, as
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Figure 6: Categorization of activities. Left: All patients. Right: Patient P1. The distribution for all pa-

tients is shown in figure 5.

shown in Figure 1, except that Figure 6 shown the distribution for all 12 days, whereas the pie chart

inMoribus shows the distribution for one day. Figure 5 shows the relative distribution of activities

for all patients.

patient weeks days hours

P1 2 12 (86%) 182 (95%)

P2 3 17 (81%) 250 (92%)

P3 4 28 (100%) 398 (89%)

P4 8 51 (91%) 676 (83%)

P5 1 7 (100%) 108 (96%)

sum 18 115 (91%) 1,614 (88%)

Table 1: Overview of patient and the

number of self-reported weeks, days,

and hours. Percentage in parenthesis

is completion rate.

Regarding patient self-rated feeling scores of each activity, we found that two patients (P1 and

P2) used a 1 − 10 scale for indicating general feeling; P3 used a 1 − 5 scale, and P4 and P5 did not

score their activities. It should be noted that P4 and P5 were never asked to do the scoring by the

therapist. Figure 7 shows a box plot of the feeling score according to each activity category (average

and standard deviation) for patient P1, P2, and P3.

Figure 8 shows the average feeling score per day for P3 over the 4-week period. This graph illustrates

the development of feelings over the week and over the 4-week period, while also showing feeling

scores per week day. P3 was the patient with most self-reported activity data, which also included

feeling scores.
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Figure 7: Feeling scores (average and standard deviation) for patient P1, P2, and P3.

DISCUSSION

As stated in the Introduction, the purpose of this study was to provide an analysis of real-world BA

self-reporting, and use this as a validation test of the activity categorization applied in Moribus,

which then can provide an insight into how the design of Moribus can be improved.

Completion Rate

A primary research question in this study was; to what degree would patients fill in BA forms on a

weekly basis with activity registration on an hourly basis. This is a core design assumption of Moribus,

and the usefulness of the system as well as the validity of the data it collects, rely on the degree to

which patients would do this. From Table 1 we see that the overall completion rate is high; all are in

the 80s, and 3 out of 5 patients have a completion rate in terms of reported hours above 90%. Overall

completion rate in terms of hours is 88% from reporting 1,1614 hours in total. These figures indicate

that when a motivated patient is asked to fill in BA forms, he or she does this with a very high degree

of completion. This provides positive evidence for the feasibility of moving this type of BA forms and

intervention to a smartphone platform.



Supporting Smartphone-based Behavioral Activation: A Simulation Study UbiComp/ISWC’17, September 11–15, 2017, Maui, HI, USA

Figure 8: Average feeling scores per day over the 4-week period for P3.

Activity Categories

A second research question we asked was; would the six activity categories suffice to map realworld

activities? Looking at Figure 6 (left) only 3% (52 activities) fall in the ‘other’ category, meaning that

they could not be categorized into the predefined six Moribus categories. Hence, the vast majority of

realworld activities could be categorized. However, the transcription revealed a set of typical activities

to select from the suggestion page of Moribus were missing. These were:

• Transport (e.g., driving, biking, taking the train)

• Relationship (e.g., dating, having dinner w. boyfriend, sleeping over)

• Illness (e.g., being ill, treatment for depression, psychotherapy)

• Children (e.g., playing with the kids, bedtime for kids, bathing kids)

• Social media (e.g., facebook, instagram)

• Religion (e.g., ceremony, baptise)



Supporting Smartphone-based Behavioral Activation: A Simulation Study UbiComp/ISWC’17, September 11–15, 2017, Maui, HI, USA

The transcript also revealed that the order of the predefined suggestions in the Moribus app were

not optimal – some of the most frequently used suggestions were long down the list. Moreover, the app

seems to suffer from a ‘cold start’ problem, i.e., the calendar and the overview display are completely

empty and there are no historical data or graphs to gain any insight from. It is therefore difficult for

patients to get started. Based on this analysis, the activity suggestion inMoribus is currently being

optimized and some pre-defined and pre-planned activities are available for the patient to get started.

For example, a pre-planned activity called ‘Planning my week’ is scheduled for Sunday afternoon at

4pm.

Activity Profiles

In order to understand how different patients are coping with their depression and to investigate

if there were any common patterns, we analyzed the categorization of activities for each patient

(Figure 5). The analysis was done by identifying which types of activities were most dominant both

quantitatively (in terms of hours spend on this type of activity) as well as qualitatively (in terms of

which types of activities seemed to improve the feeling score, if available). Through this analysis,

different ‘activity profiles’ was identified:

Maintaining a professional life – Some patients focus on maintaining their professional life

by continuing to work and/or attending school. A normal work week in Denmark is 37 hours,

which means that if a patient is able to work she or he would spend 33% (37 out of 112 hours)

of her or his time working. None of the patients are at 33% but P3 is close (27%).

Maintaining everyday life – Some patients focus on activities of daily living at home such as

preparing proper meals, eating, resting and sleeping. All patients clearly need to do this, but for

some it takes up a larger proportion of the week than others. For example, P1 and P3 spend 25%

and 36% of their time doing daily activities, staying at home.

Maintaining a social life – Some patients spend time and effort on relating to others and spend

a proportionally large amount of time with other people. P4 and especially P5 fits this activity

profile.

Maintaining physical activity – Physical activity such as going for a walk, bicycling, jogging,

swimming, etc. may improve recovery from depression [9]. From the study, we see that P5 seems

to very active, spending 14% of his or her time on activities in the ‘movement’ category. The

other patients seems to be less active, ranging from 1-7%. However, it should be noted that one

hour of physical activity – like jogging – does not compare equally to one our or ‘hygge’, like

watching a movie. The Danish health authorities recommend 30 minutes of physical activity

every day, which equals 4 hours per week, which equals 4%. Hence, all patients except P3

actually complies to this recommendation.
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Feeling Scores

When analyzing the ‘feeling scores’ this study was less conclusive. There was a lack of standardization

in the scoring methodology; P1 and P2 used a 1− 10 scale, P3 used a 1− 5 scale, and P4 and P5 did not

score their activities. Also, the instruction stating that the patient should ‘rate how you feel’ is a very

vague and imprecise instruction, which was subject to different interpretations by the patients. For

example, P2 used the scale continuously, meaning 1 is worst and 10 is best. But P1 divided the scale

into 5 sub-scales [1 − 2][3 − 4][5 − 6][7 − 8][9 − 10] and defined the lowest interval as ‘hopeless’ and

the highest scale as ‘unhealthy / manic’. Hence, even though P1 and P2 used the same scale, their

scores are incomparable.

Analyzing the feeling scores according to activity categories as shown in Figure 7 shows no clear

patterns; scores in all categories seems to be similar both in terms of average score and median. P2

has a large standard deviation for activities in the ‘other’ category, but this reflects the fact that this

contains both activities on ‘church visit’ (which is rated very low) as well as ‘psychotherapy’ (which

is rated very high). The only finding seems to be that P1 feels better when being physically active

(‘movement’) as compared to other kinds of activities; similarly with P3 on social activities.

However, when doing a more detailed analysis of the feeling score over the course of a week for P3

as shown in Figure 8, we do find an interesting pattern. It seems like the general feeling increased on

Saturdays, declined on Sunday and then increased again onWednesdays (mid-week). This observation

could be relevant for P3, since it might help her or him to better prepare for Sundays and maybe plan

‘nice’ activities beforehand (a key approach in BA).

FEASIBILITY TEST OFMORIBUS

As an additional verification step of theMoribus system, we did a simulation based on these realworld

data. Specifically, we wanted to investigate the following questions:

(1) Will the user be able to enter his or her realworld data, i.e. doesMoribus support the activity

registration from the paper-based forms?

(2) How much time would a user spend on planning activities – both for a day and for a whole

week?

(3) How much time would a user spend on registrering ‘mastery’ and ‘enjoyment’ for activities –

both planned and non-planned activities?

In order to investigate these three questions, one author (JEB) took the data from one patient – P1

– and entered it into Moribus to see how this worked. Specifically, we entered the data for one week

from the paper-based form shown in Figure 4. The results are shown in Table 2.

Overall, there was no problems in entering the form into Moribus. In fact, the overview screen and

calendar shown in Figure 1 and 2 show data taken from the paper form shown in Figure 4. When
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entering the data for one week, 16 new activities in total had to be manually created (i.e., they were

not part of the standard list). This corresponds to 9% of the total amount of activities registred by P1.

time # new act.

Planning a day 03:07 3

Planning a week 19:34 16

Registration of a planned day 01:18 0

Registration of an unplanned day 02:15 0

Table 2: Timing of entering and regis-

tration of activities inMoribus – for a

day and for a week.

As for the timing of usingMoribus for activity planning and registration, we see that it took a little

over 3 minutes to plan one day and ca. 20 minutes to plan a 7-day week. This includes the entry of 3

and 16 new activities for a day and week, respectively. Once these activities has been entered into

Moribus, future planning will be slightly faster since these activities are now available.

The registration of planned activities for a day was fast – less than 2 minutes. Moreover, we see that

planing and registration of a day was faster (2 minutes) compared to just planning. This is because in

the latter case (i.e. the first round), 3 new activities had to be entered into the system. Hence, once

activities are entered and available, then registration of unplanned but similar activities becomes

faster.

We are well aware that comparing the time and effort of a designers of Moribus doing a desk test

with a patient less familiar with the app in a realworld setting might be less valid. We do expect,

however, that once familiar withMoribus, patients will be able to plan and register activities within a

similar timeframe. And we consider this a reasonable time usage; spending a couple of minutes each

day to plan or register activities are definitely acceptable. Spending 20 minutes to plan a whole week

is below the one hour that a therapist recommend a patient to spend each Sunday – even though one

hour clearly also should include time for contemplating about activities for the upcoming week, and

not only interacting with the smartphone.

CONCLUSION

Behavioral activation (BA) has proven to be a simple yet efficient therapy approach for depression

that encourage patients to do detailed reporting of activities on an hourly basis. To support BA on a

smartphone we have developed Moribus. In order to validate the feasibility and design of the system,

we did a simulation of the use of it. The simulation was done by collecting paper-based BA forms

from 5 patients, covering in total 18 weeks, 115 days, and 1,614 hours of self-reported activity data. A

thorough analysis of this bulk of data revealed that the completion rate of all patient was very high,

which indicates that this kind of activity registration is feasible to ask patients to perform. Moreover,

the data showed that the categories used in Moribus were sufficient to cover all 1,614 registered

hours of activity. Only a few generic activities needed to be added to the standard list inMoribus.

The data analysis also revealed a set of prototypical ‘activity profiles’, including patients focusing

their BA activities on professional, everyday, social, and physical activities.

Analyzing the ‘feeling’ scores of the patients, the study was, however, less conclusive. It became

apparent that patients use the scales very differently (if at all), and that there were no consistent

patterns in terms of relationship between the feeling score and the types of activities done. The

analysis of four weeks of feeling scores for one patient, however, revealed that there seemed to be a
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weekly cyklus in her or his scores; Sundays are generally low, whereas Saturdays are the ‘peak’ of the

week. This kind of visualization of patterns might help the patient get an insight the cyklus of her or

his feelings and plan accordingly – a methods which is the cornerstone of BA.

Based on this analysis,Moribus is currently being optimized andmade ready for general deployment

and clinical testing.
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